Raumfahrt - NEW HORIZONS KBO Mission - Update-35


The PI's Perspective: What a Year, What a Decade!



With data from the Arrokoth flyby - which will continue coming back to Earth through all of 2020 - we've already learned an amazing amount about KBOs that could never have been gleaned from Earth-based telescopes; not even the powerful Hubble or the much anticipated James Webb Space Telescope set to launch in 2021. Most importantly, in my view, we discovered that Arrokoth, a "contact binary" consisting of two independent lobes that joined gently, appears to have formed with the unmistakable characteristics of "local cloud collapse" models of solar system formation.


New Horizons is healthy and performing well as it flies ever onward, at nearly one million miles per day! This month we're collecting new data on the Kuiper Belt's charged particle and dust environment, and observing two distant Kuiper Belt objects (KBOs) to learn about their surface properties, shapes and rotation periods, and to search for satellite systems.

Much more is in store for this mission, but as this year and decade conclude, I want to look back and take stock of where we have been.

For New Horizons, 2019 began with a major mission milestone: the first-ever close up and personal exploration of a KBO. That target, originally known as 2014 MU69, is now the farthest world ever explored - more than a billion miles beyond Pluto!

And, if you hadn't heard, last month MU69 finally received its official name: Arrokoth, a Powhatan/Algonquian Native American word for "sky," which the New Horizons team chose. I love this beautiful name, and the way it beautifully honors both the state of Maryland, where so many Powhatans lived and where New Horizons was build and is operated from!

With data from the Arrokoth flyby - which will continue coming back to Earth through all of 2020 - we've already learned an amazing amount about KBOs that could never have been gleaned from Earth-based telescopes; not even the powerful Hubble or the much anticipated James Webb Space Telescope set to launch in 2021. Most importantly, in my view, we discovered that Arrokoth, a "contact binary" consisting of two independent lobes that joined gently, appears to have formed with the unmistakable characteristics of "local cloud collapse" models of solar system formation.

These models, really just computer simulations before New Horizons revealed Arrokoth, posited that individual planetesimals - the building blocks of planets - formed from material in their immediate neighborhood, rather than from collisions of far-flung material as 20th century computer simulations predicted. Results from this flyby have led to a major advance in understanding the origin of the planets of our solar system.

The flawless flyby of Arrokoth and its many discoveries not only made 2019 a banner year for New Horizons, it also marked completion of the second major task (after exploring the Pluto system) that the mission was conceived to accomplish in the early 2000s, when the first Planetary Decadal Survey ranked it as a top funding priority. So it's appropriate this December to look back and celebrate the work of our mission and our team in carrying out this challenging exploration.

And as the decade of the 2010s ends, I also want to reflect on how much the mission has accomplished over the past 10 years. As 2009 closed out, New Horizons wasn't even halfway from Earth to Pluto - and Pluto remained just a dot in the distance to every telescope humankind had ever built. Halfway through the decade though, in the summer of 2015, New Horizons transformed Pluto and its system of moons from points of light into real worlds.

And what worlds we found! With our Pluto discoveries we can rewrite the textbooks about how complex and how geologically active small planets can be. From its convecting nitrogen glaciers and cryovolcanoes to its hazy atmosphere and the watery ocean that we now suspect lies beneath its icy crust, Pluto astounded us. So much so, in fact, that planetary scientists want new missions to orbit it and to study more of its dwarf planet kin across the Kuiper Belt.

And as the data from the Pluto system flowed back in 2015 and 2016, New Horizons was sent onward to explore the Kuiper Belt in a first extended mission that targeted the flyby of Arrokoth as its centerpiece and which continues to explore both the Kuiper Belt environment and distant KBOs and dwarf planets seen in our telescopes.

Exploring Onward
So as we look forward to the 2020s, our team is planning the next few years for New Horizons. Starting next summer, we plan to use some of the largest ground-based telescopes and possibly the Hubble to begin a search for new KBOs to explore, both up close and in the distance. (We can't search until summer because that is when the part of the sky where New Horizons is going is in the darkness of the night time sky.)

We don't know how many KBOs we will discover or whether any will be within our fuel supply to reach for a final close flyby, but that's what these searches, in 2020 and again in 2021, will reveal. We'll keep you posted on our progress, but keep in mind that finding MU69 took more than four years using the world's largest ground-based telescopes and then the amazing Hubble Space Telescope.

Our science team is working on literally dozens of papers describing new results from both the Arrokoth and Pluto flybys, all of which we expect to be published in 2020. This bonanza of results will kick off with a set of three papers now under review to the prestigious journal Science and will be followed by 20 papers in Icarus, the most well-known research journal of planetary science, and over two-dozen review papers about the Pluto system in a 1,000-plus page compendium to be called "The Pluto System After New Horizons," which is on track for a late 2020 publication date.

Also up for 2020 will be new flight software loads to give New Horizons additional capabilities for exploration across the decade of the '20s.

But even before all that, the New Horizons science team will be reporting new results next week and next month the American Geophysical Union and American Astronomical Society meetings. We'll also be meeting this month with NASA's storied Voyager space mission team to plan how New Horizons and the Voyagers - the most distant spacecraft in the Sun's heliosphere and the first spacecraft to operate in interstellar space, respectively - can work together as a multipoint observatory of the very distant space environment.

As the 2010s close, we on the New Horizons team have much to be thankful for in this amazing decade of discovery highlighted by historic explorations of the most distant worlds ever encountered by spacecraft. We also have much to look forward to, as a new decade and new explorations dawn for New Horizons.

Well, that's my report for now. Have great holidays and a wonderful celebration of the new decade dawning in just a few weeks!

I'll write again early in 2020. Meanwhile, I hope you'll keep on exploring - just as we do!

Quelle: SD


Far, Far Away in the Sky: New Horizons Kuiper Belt Flyby Object Officially Named 'Arrokoth'

New Horizons Mission, 2014 MU69 Named 'Arrokoth'
Composite image of primordial contact binary Kuiper Belt Object 2014 MU69 from New Horizons Spacecraft Data

In a fitting tribute to the farthest flyby ever conducted by spacecraft, the Kuiper Belt object 2014 MU69 has been officially named Arrokoth, a Native American term meaning “sky” in the Powhatan/Algonquian language. 


With consent from Powhatan Tribal elders and representatives, NASA’s New Horizons team – whose spacecraft performed the record-breaking reconnaissance of Arrokoth four billion miles from Earth – proposed the name to the International Astronomical Union and Minor Planets Center, the international authority for naming Kuiper Belt objects. The name was announced at a ceremony today at NASA Headquarters in Washington, DC.


“The name ‘Arrokoth’ reflects the inspiration of looking to the skies and wondering about the stars and worlds beyond our own,” said Alan Stern, New Horizons principal investigator from Southwest Research Institute, Boulder, Colorado. “That desire to learn is at the heart of the New Horizons mission, and we’re honored to join with the Powhatan community and people of Maryland in this celebration of discovery.”


New Horizons launched in January 2006; it then zipped past Jupiter for a gravity boost and scientific studies in February 2007 and conducted an historic first flight through the Pluto system on July 14, 2015. The spacecraft continued its unparalleled voyage on New Year’s 2019 with the exploration of Arrokoth – which the team had nicknamed “Ultima Thule” ­-- a billion miles beyond Pluto, and the farthest flyby ever conducted. 


Arrokoth is one of the thousands of known small icy worlds in the Kuiper Belt, the vast “third zone” of the solar system beyond the inner terrestrial planets and the outer gas giant planets. It was discovered in 2014 by a New Horizons team – which included Marc Buie, of the Southwest Research Institute – using the powerful Hubble Space Telescope. 


“Data from the newly-named Arrokoth, has given us clues about the formation of planets and our cosmic origins,” said Buie. “We believe this ancient body, composed of two distinct lobes that merged into one entity, may harbor answers that contribute to our understanding of the origin of life on Earth.”


In accordance with IAU naming conventions, the discovery team earned the privilege of selecting a permanent name for the celestial body. The team used this convention to associate the culture of the native peoples who lived in the region where the object was discovered; in this case, both the Hubble Space Telescope (at the Space Telescope Science Institute) and the New Horizons mission (at the Johns Hopkins Applied Physics Laboratory) are operated out of Maryland — a tie to the significance of the Chesapeake Bay region to the Powhatan people.


“We graciously accept this gift from the Powhatan people,” said Lori Glaze, director of NASA’s Planetary Science Division. “Bestowing the name Arrokoth signifies the strength and endurance of the indigenous Algonquian people of the Chesapeake region. Their heritage continues to be a guiding light for all who search for meaning and understanding of the origins of the universe and the celestial connection of humanity.”


The Pamunkey Reservation in King William County, Virginia, is the oldest American Indian reservation in the U.S. -- formed by a treaty with England in the 1600s and finally receiving federal recognition in July 2015. The Pamunkey tribe and its village were significant in the original Powhatan Confederacy; today, Pamunkey tribal members work collaboratively with other Powhatan tribes in Virginia and also have descendants who are members of the Powhatan-Renape Nation in New Jersey. Many direct descendants still live on the Pamunkey reservation, while others have moved to Northern Virginia, Maryland, D.C., New York and New Jersey.


The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, designed, built and operates the New Horizons spacecraft, and manages the mission for NASA's Science Mission Directorate. NASA’s Marshall Space Flight Center (MSFC) Planetary Management Office, in Huntsville, Alabama, provides the NASA oversight for the New Horizons. The Southwest Research Institute, based in San Antonio, directs the mission via Principal Investigator Stern, and leads the science team, payload operations and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA's MSFC.


New Horizons Path of Exploration

Quelle: NASA


Update: 6.01.2020


Looking back at a New Horizons New Year's to remember


It was a busy year for New Horizons among the outerplanet.

Safe to say, 2020 came in more quietly for many members of the New Horizons mission team than did 2019.

A year ago, NASA's New Horizons spacecraft flew past the Kuiper Belt object 2014 MU69 (now known as Arrokoth) in the early hours of New Year's Day, ushering in an era of exploration of the enigmatic Kuiper Belt, a region of primordial objects that holds keys to understanding the origins of the solar system.

That flyby was both the first ever close-up exploration of a Kuiper Belt object and the most distant exploration of any object in space - more than a billion miles beyond Pluto, which New Horizons explored in 2015.

At the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, during what the Washington Post called the "nerdiest New Year's party in the solar system," participating scientist, astrophysicist and legendary Queen guitarist Brian May rang in 2019 with a song inspired by New Horizons. Mission Principal Investigator Alan Stern led a crowd of team members, family and friends in the countdown to the 12:33 a.m. flyby of the object, then known by its nickname, Ultima Thule.

Signals confirming the spacecraft was healthy and had filled its digital recorders with science data on MU69 reached the mission operations center at APL at 10:29 a.m. EST.

"Congratulations to NASA's New Horizons team, Johns Hopkins Applied Physics Laboratory and the Southwest Research Institute for making history yet again. In addition to being the first to explore Pluto, today New Horizons flew by the most distant object ever visited by a spacecraft and became the first to directly explore an object that holds remnants from the birth of our solar system," NASA Administrator Jim Bridenstine said at the time. "This is what leadership in space exploration is all about."

In the following months, New Horizons transmitted dozens of data sets to Earth, with the team writing new chapters in the story of Arrokoth and the outer solar system. And there's more to come in 2020.

"The flyby of Arrokoth was a landmark event in space exploration and for the first time revealed just how the building blocks of planets are made," said Stern, of the Southwest Research Institute. "Data from that flyby have been coming back to Earth all of 2019 and will continue to do so across all of 2020 and part of 2021. The discoveries those data hold have certainly just begun!"

Quelle: SD