Sonntag, 7. April 2013 - 19:26 Uhr

Raumfahrt - Buzz Aldrin will eine Kolonie der Menschen auf dem Mars ab 2030


IF NOTHING beats being an astronaut, man-on-the-moon Buzz Aldrin has got career infamy pretty much licked.

Still riveted by craters, missions, orbits, weightlessness ad living on Mars, Buzz, who followed his pal Neil Armstrong onto the moon back in 1969, now has his sight set on the next big step for man: Mars.

The astronaut, who joined the late Mr Armstrong for a globally watched and remembered leap on the moon has even gone so far as to lay out a plan to have a human colony on the Red Planet by the mid 2030s in a new book.

Mr Aldrin told he wanted to inspire children to be intested in space.

"We need more kids to be adventurous and curious about what's out there," he said.

"We need the next generation to be our Mars generation. I'm very passionate about getting man to Mars and starting a colony there. I've outlined my plan of how to get us there in my new book, Mission to Mars coming out by National Geographic in May of this year."


Mr Aldrin is also spruiking a competition that will give Australians the chance to take a once-in-a-lifetime journey into space.

One Australian will be granted a seat aboard the Lynx spacecraft to be taken more than 100km into space, the winner going where only a select few have gone before, gaining some pretty good bragging rights in the wash-up.

With such a journey sure to excite those with a penchant to be lost in space, we caught up with Buzz who gave the buzz on space travel.

Do you still remember every second of your monumental (1969) walk on the moon on the Apollo 11 spacecraft? 

"For the most part and doing many interviews about it over the years helps to keep the memories fresh because you talk about it so often. It's a pretty memorable event though and I think most of my Apollo peers would probably remember most details of their own missions."

Was your moon walk a bond that held your friendship together with the late Neil Armstrong?

"We were certainly friends having trained together for several year and of course a bond forms from experiencing such a historical event together. We felt, and still feel that bond with our other Apollo 11 crew mate, Michael Collins. Even though he didn't get a chance to walk on the moon he was an extremely important member of our crew. He orbited the moon waiting for us to rendezvous with his spacecraft. Without him we couldn't have come home."

What can kids do to be encouraged to seek out and learn about space and aeronautics?

"Be curious, try new things, get out and be active. All of us who were privileged to be a part of the Apollo program served our country and wanted to do something helpful. We were all adventurous and so I think it takes a very adventurous spirit to go into space. We need more kids to be adventurous and curious about what's out there. We need the next generation to be our Mars generation. I'm very passionate about getting man to Mars and starting a colony there. I've outlined my plan of how to get us there in my new book, "Mission to Mars" coming out by National Geographic in May of this year."

What are the real attributes needed to become an astronaut?

You need to be brave, enthusiastic and a team player. You also need to be mentally tough. Probably most important though is having a strong stomach! These are the exact attributes we'll be judging the Lynx contestants on when they come to space camp in Florida next year.

Where can you see space travel being, in say, 50 years time?

"We're already seeing commercial space travel become a reality and I think this will continue to grow and become less expensive as technology improves. I want to eventually see commercial flights that orbit the earth."

Does a day go by you when you don't get asked or talk  about space, the moon and the walk that defined a century?

"No, but I'm a space man so that comes with the territory. I care about our future in space and so it gives me an opportunity to talk about the future and what I think we should be doing to expand commercial space efforts and that more people are starting to get the chance to experience space travel for themselves."

What kind of activities will Lynx contestants be doing at space camp to try and win a seat on the space shuttle?

"Some of the activities they will have to do include the G-Centrifuge - a cockpit simulator flying in high-speed circles at the end of a mechanical arm where you experiences force up to 4.5G. The Jet Fighter Flight where you'll break the speed of sound and even get the chance to flip the plane on its head in mid-air. There is the Zero G Flight which are parabolic flights that will allow you to experience the weightlessness of space. And there is The Astronaut Assault Course, space briefings, one-to-one interviews with astronauts to help participants get ready for space travel and of course, mental aptitude tests."

Aspiring space cadets will also be judged on their bravery, enthusiasm and team work with performance counting for everything with the top Australian candidate securing a place on board the spacecraft for the mission into space.

Australians have a chance to claim one of four highly sought-after places at the Lynx Space Academy in Florida for a three-day immersion into astronaut life. Here candidates from all over the world will be tested to their limits in a series of competitive space-simulation challenges. Anyway, away you go.

Quelle: theTelegraph


Sonntag, 7. April 2013 - 14:40 Uhr

Astronomie - Meteor über Nordwest-Russland?


MOSCOW, April 7 (RIA Novosti) – Russia’s Emergencies Ministry rejected media reports on Sunday that a new meteorite had crashed in the country’s northwest.

Some media reports said on Sunday eye-witnesses saw the fall of an unidentified flying object near the town of Tosno in the Leningrad Region.

“No facts of the fall of a meteorite have been confirmed,” the ministry’s spokeswoman said.

Rescuers from the Emergencies Ministry went to the site of the presumed meteor crash after a call by eye-witnesses but did not find anything, she said.

Meteor mania started in Russia in February after a meteorite exploded over the Urals city of Chelyabinsk.

The meteorite slammed into the Urals region on February 15, landing with a massive boom that blew out windows and damaged thousands of buildings around Chelyabinsk, injuring 1,200 people in the area. Health officials say 52 people were hospitalized.

NASA estimates the meteorite was roughly 15 meters (50 feet) in diameter when it struck the Earth's atmosphere, travelling faster than the speed of sound, and exploded in a fireball brighter than the sun. The meteor was the largest object to enter the planet’s atmosphere in 83 years.




Sonntag, 7. April 2013 - 14:30 Uhr

Astronomie - Kepler 2.0: Nächste Generation von Exoplaneten Jäger geplant


NASA has selected a $200 million mission to carry out a full-sky survey for exoplanets orbiting nearby stars. The space observatory, called the Transiting Exoplanet Survey Satellite (TESS), is scheduled for a 2017 launch.

Like the currently operational Kepler Space Telescope, TESS will be in the lookout for exoplanets that orbit in front of their host stars, resulting in a slight dip in starlight. This dip is known as a “transit” and Kepler has revolutionized our understanding about planets orbiting other stars in our galaxy by applying this effective technique. As of January 2013, Kepler has spotted 2,740 exoplanetary candidates.

Although Kepler’s powerful optics have allowed astronomers an unprecedented look into multiplanetary systems, identifying worlds as small as Mercury to many times the size of Jupiter, it is restricted to gazing at a small field of view — accounting for a mere 0.28 percent of the sky. Tiny it may be, but 145,000 main sequence stars fill that view, providing us with a gargantuan amount of transit data for hundreds of exoplanets.

But TESS will be surveying the entire sky, supercharging our profound quest to understand how many stars like our own could host worlds, not too dissimilar to Earth, in their habitable zones.

“TESS will carry out the first space-borne all-sky transit survey, covering 400 times as much sky as any previous mission,” said TESS lead scientist George Ricker, of the Massachusetts Institute of Technology (MIT) Kavli Institute for Astrophysics and Space Research (MKI). “It will identify thousands of new planets in the solar neighborhood, with a special focus on planets comparable in size to the Earth.”

“The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which will forever be the most favorable targets for detailed investigations,” added Ricker.

According to a NASA announcement on Friday, “TESS will use an array of telescopes to perform an all-sky survey to discover transiting exoplanets ranging from Earth-sized to gas giants, in orbit around the nearest and brightest stars in the sky. Its goal is to identify terrestrial planets in the habitable zones of nearby stars.”

Kepler was launched in 2009 and recently saw its mission extended to 2016. It is hoped that the space telescope will detect unequivocal evidence for the presence of an Earth-sized world orbiting within its host star’s habitable zone — the region that is not too close and not too far from a star that permits liquid water to exist on a rocky planet’s surface.

Although we are some time off from probing a distant potentially habitable world’s atmosphere for the presence of liquid water or chemical traces of life, Kepler — along with supporting observations by other space- and ground-based instrumentation — is giving us a tantalizing hint of the preponderance of small rocky worlds in the Milky Way. Using Kepler data, astronomers extrapolated an estimated exoplanetary population for the Milky Way earlier this year and arrived at a staggering number: 100 billion. This, in turn, suggests there are many, many multiplanetary systems out there.

TESS will undoubtedly become the “next generation” of exoplanet hunters, revolutionizing our perspective on our cosmic backyard once again.

Submitted as concepts for NASA’s Explorer program, TESS and the $55 million Neutron Star Interior Composition Explorer (NICER) were chosen from four options as they “offer the best scientific value and most feasible development plans.” NICER will be attached to the space station to measure the “variability of cosmic X-ray sources, a process called X-ray timing, to explore the exotic states of matter within neutron stars and reveal their interior and surface compositions,” according to the NASA news release.

NASA’s Explorer program is intended to provide frequent, low-cost science missions. Satellite missions are capped at $200 million, whereas space station missions are capped at $55 million.


Quelle: NASA

Tags: Kepler 2.0 


Samstag, 6. April 2013 - 23:10 Uhr

UFO-Forschung - CENAP in der Presse




Und ein April-Scherz bringt die Ufo-Gläubigen der Exopolitik in Aufruhr...



Update: 6.04.2013




Samstag, 6. April 2013 - 23:05 Uhr

Astronomie - SOFIA Observatorium Dokumentation




Für seinen Einsatz als fliegendes Observatorium musste die Boeing 747 grundlegend überholt und umgebaut werden. Die Maschine wurde dabei völlig überarbeitet, um Platz für die Teleskopkabine und die Arbeitsplätze der Wissenschaftler zu gewinnen. Der schwierigste Teil aber war die Herstellung einer Öffnung im Flugzeugrumpf, die Gestaltung der Teleskopkabine und der Einbau des Teleskops mit seiner Lagerung. Dazu wurde das SOFIA-Flugzeug 1999 nach Waco/Texas überführt, wo die Umbauarbeiten und die Integration des Teleskops von L3-Communications Intergrated Systems durchgeführt wurden. Um den Ingenieuren eine Überprüfung ihrer Pläne an einem 1:1-Modell zu ermöglichen bevor die eigentlichen Umbauten am Flugzeug vorgenommen werden sollten, wurde ein baugleiches Segment einer abgewrackten Boing 747 SP nach Waco gebracht. 
Die Bilder des Transportes dieser so genannten "Sektion 46" finden sie auch in unserer Galerie. An diesem Segment wurden die wichtigsten Umbauarbeiten geübt: Das Öffnen des Flugzeugrumpfs, der Einbau des Druckschotts und eines Modellteleskops. Die Erfahrungen bei dieser "Trockenübung" haben die anschließenden Umbauarbeiten am richtigen Flugzeug und mit dem echten Teleskop sehr erleichtern.
Bilder der Umbauarbeiten aus dem Jahr 1999
SOFIA wird nach Waco/Texas überführt ..
.. und in in den Hangar geschleppt..
.. wo schon ein "Trockendock" auf des Flugzeug wartet. (Im Hintergrund die bereits eingetroffene "Sektion 46")
Umfangreiche Arbeiten beginnen an allen Teilen der Maschine.
Besondere Aufmerksamkeit gilt dabei dem hinteren Bereich des Flugzeuges, in dem später die Teleskopkonstruktion Platz finden wird.
Zwischenzeitlich wurde am "Modell" schon die Teleskopöffnung geschaffen und das Druckschott eingebaut (hier deutlich als rote Fläche in der Teleskopöffung zu sehen).
Hier das Druckschott in Großaufnahme. In der Öffnung findet später die Teleskopaufängung Platz.
Ende 1999 wurde dann ein Modell des Teleskops in die Sektion 46 eingebaut.
Hier das Modell des Teleskops in Großaufnahme. Das Originalteleskop wurde in Deutschland gebaut und in den USA in das SOFIA-Flugzeug installiert.


Nach Überführung des Teleskops von Deutschland in die USA
September 2002:
Nachdem das Teleskop in Deutschland fertiggestellt wurde, ist es nach Waco, Texas überführt worden. Unter der Federführung von L3-Communications Intergrated Systems wurde es in enger Zusammenarbeit mit Mitarbeitern des DSI und dem   DLR in das Flugzeug integiert. Für den Transport wurde es in drei Teile zerlegt: Den Teleskoprahmen, die Aufhängung und den Primärspiegel.
September 2002:
SOFIA-Teleskop kommt in den USA an
Das in Deutschland gebaute SOFIA-Teleskop wurde nun mit einem Airbus-Großraumflugzeug Beluga in die USA geflogen, um von den amerikanischen und deutschen Ingenieuren und Technikern in die Boeing 747 SP integriert zu werden. Auf dem Bild ist zu sehen, wie der Primärspiegel nach einer 7000 Meilen langen Reise auf dem texanischen Flughafen Waco aus dem Transportflugzeug geladen wird.
Zwei Ingenieure der Firma Kayser-Threde entfernen im Flugzeug den Schutz des SOFIA Primärspiegels, um das Teleskop für die erste Sternenbeobachtung bereit zu machen.
Die Boeing 747 SP wurde von den amerikanischen Ingenieuren bereits modifiziert, indem eine Öffnung für das Teleskop in den Rumpf geschnitten wurde und dieser Bereich von der eigentlichen Kabine durch ein großes Druckschott getrennt wurde, welches auf dem Bild als großer grün-gelber Ring mit Löchern zu erkennen ist und auch zur Befestigung der Teleskop-Aufhängung dient.
1. Einbau der Aufhängung
Ein speziell für diese Aufgabe modifizierter Kran trägt die Aufhängung für das Teleskop zum Flugzeug.
Für den eigentlichen Einbau muss noch ein zweiter Kran helfen
Am Schott werden Fixierungspunkte zur Stabilität der Aufhängung angebracht.
Dies ist der schwierigste Teil der Arbeit.
Damit die Aufhängung exakt in den Flugzeugrumpf eingebracht werden kann, müssen zwei Kräne die etwa 9300 kg schwere Last stabilisieren.
Nachdem die Teleskop-Lagerung sich nun im Flugzeug befindet, muss sie hier besonders fest verschraubt werden.
Januar 2003:
Geschafft ! 
Tom Bonner - SOFIA Projekt Manager- begutachtet erleichtert die Arbeit.
Bevor als nächstes der schwere Teleskoprahmen eingebaut wird, muss das Flugzeug wieder auf das eigene Fahrwerk gestellt werden (Downjacking), um die zusätzliche Last optimal zu verteilen.
Mai 2003
2. Einbau des Teleskoprahmens
Nun muss im offenen Teil der Kabine der Teleskoprahmen - die sogenannte Metering Structure - an die Aufhängung angebracht werden. Dabei muss diese exakt an das hier abgebildete Starframe befestigt werden, welches als Verbindungsstück zwischen dem Rahmen und dem Nasmyth-Tubus dient.
Der 750 kg schwere Teleskoprahmen wird dazu vorsichtig mit Hilfe eines Kranes in die Rumpföffnung eingelassen.
Nachdem sich die Metering Structure nun im Flugzeug befindet, wird sie an dem Starframe befestigt, um vom Nasmyth-Tubus und damit von der Aufhängung getragen werden zu können.
Juli 2003
3. Einbau des Primärspiegels
Der Primärspiegel als größter der drei verwendeten Spiegel, wird nun in den Teleskoprahmen eingebracht. Zunächst wird er auf einem speziellen Wagen zum Flugzeug gerollt (hier die Seitenansicht).
Da der Spiegel nun am Flugzeug angekommen ist, muss er an dem Kran befestigt werden.
Dieser hebt jetzt den 1680 kg schweren und 2,7 m durchmessenden Primärspiegel zum Flugzeugrumpf.
Der Spiegel befindet sich jetzt innerhalb des Flugzeugs, muss allerdings noch an dem Rahmen festgemacht werden.
Der Spiegel wurde nun befestigt und ist eingebaut. Noch ist er allerdings aus Schutzzwecken mit einer roten Plane bedeckt, da er sehr empfindlich auf äußere Einflüsse reagiert.
Aus dieser Perspektive in die Teleskopkabine, sieht man die gesamte Teleskopstruktur mit dem Primärspiegel (rot) und der Weitwinkel-Kamera mit ihrer Aluminium-Abdeckung auf der 8-Uhr-Position des Teleskoprings.
Teleskopstruktur, die in das Innere der bedruckten Kabine ragt. Erkennbar ist die Öffnung des Nasmyth-Tubus - zum Schutz noch mit Folie bedeckt - und der Flansch zur Befestigung der wissenschaftlichen Instrumente.
Durch Befüllen der Lagerung mit Öl ist ein Film von 30 µm Dicke entstanden, der die nahezu reibungslose Bewegung des Teleskops ermöglicht.
Dezember 2003:
Bild zweier Laser an der Hangardecke, aufgenommen mit der Weitwinkelkamera auf der Tragestruktur. Damit wird die Nachführung und die Kameraorientierung zum ersten Mal getestet.
Ein wichtiges Merkmal der Geräte ist das Auflösungsvermögen, also die Fähigkeit, Strahlung benachbarter Wellenlängen trennen zu können. In der folgenden Übersicht sind die einzelnen SOFIA-Instrumente mit ihrem Auflösungsvermögen über dem abgedeckten Wellenlängenbereich dargestellt.
SOFIA bei seinem ersten transatlantischen Besuch in Stuttgart.
Innenansichten von SOFIA
Quelle: SOFIA-Institut Stuttgart / NASA


Samstag, 6. April 2013 - 23:00 Uhr

Astronomie - Einblicke in das Deutsche SOFIA Institut in Stuttgart



Kompetenzzentrum für Infrarotastronomie -
Deutsches Betriebszentrum des SOFIA Observatoriums
Im November 2004 ist das Deutsche SOFIA Institut (DSI) an der Universität Stuttgart gegründet worden und befindet sich am Institut für Raumfahrtsysteme (IRS). In den nächsten Jahren wird hier das deutsche Kompetenzzentrum für Infrarotastronomie entstehen. Zusätzlich koordiniert das DSI im Auftrag des Deutschen Zentrums für Luft- und Raumfahrt (DLR) die Fertigstellung des Infrarotobservatoriums SOFIA und den späteren Betrieb. Im Rahmen der wissenschaftlichen Beobachtungen wird das DSI die deutschen Astronomen sowie die German SOFIA Science Working Group (GSSWG) fachlich kompetent bei der Nutzung des SOFIA Observatoriums unterstützen. Um einen reibungslosen Teleskopbetrieb zu ermöglichen, werden während der wissenschaftlichen Betriebsphase von SOFIA bis zu 15 Mitarbeiter ständig beim amerikanischen Betriebszentrum vor Ort sein. Das DSI organisiert von deutscher Seite aus die wissenschaftliche Nutzung und koordiniert den Betrieb des SOFIA-Projekts. Hierbei erstrecken sich seine Aufgaben auf folgende Bereiche:
Aufbau des deutschen Kompetenzzentrums für Infrarotastronomie
Koordination des wissenschaftlichen Programms
Unterstützung der GSSWG und der deutschen Instrumententeams
Unterstützung der deutschen Wissenschaftler bei der Benutzung des SOFIA Observatoriums
Unterstützung der deutschen SOFIA Intrumententeams
Bewertungsverfahren der eingereichten SOFIA Beobachtungsanträge
Mitarbeit bei der Erstellung des Beobachtungszeitplans für SOFIA
Betrieb und Wartung des SOFIA Teleskops
Beistellung von Triebwerken des Flugzeugs
Aufbau und Koordination eines akademischen Austauschprogramms
Öffentlichkeitsarbeit sowie Aufbau und Koordination eines bundesweiten Bildungsprogramms
Aufbau der nötigen Infrastruktur z.B. im Bereich der Personalentsendung Archivierung, des Datentransfers, und der Rechnerunterstützung
SOFIA, das Stratosphären Observatorium für Infrarot-Astronomie, ist ein Gemeinschaftsprojekt des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) und der National Aeronautics and Space Administration (NASA). Es wird im Auftrag des DLR mit Mitteln des Bundes (BMWi), des Landes Baden-Württemberg und der Universität Stuttgart durchgeführt. Die deutschen Instrumente von SOFIA werden durch die Max-Planck Gesellschaft, die Deutsche Forschungsgesellschaft und die Universität Köln finanziert. Das Deutsche SOFIA Institut (DSI) der Universität Stuttgart koordiniert den wissenschaftliche Betrieb auf deutscher Seite, auf amerikanischer Seite wird er von dem NASA Ames Research Center (ARC) und der Universities Space Research Association (USRA) durchgeführt. Das gesamte Projekt wird zu 80% von der NASA und zu 20% von dem DLR finanziert; dies betrifft sowohl den Bau des Observatoriums als auch den 20-jährigen Betrieb. Der deutsche Beitrag zum Bau umfasst das Teleskop mit seinem 2,7 m durchmessendem Hauptspiegel. Das DLR hat das Deutsche SOFIA Institut (DSI) an die Universität Stuttgart im November 2004 beauftragt die Fertigstellung des SOFIA Observatoriums und später dessen Betrieb und wissenschaftliche Nutzung zu koordinieren. Das DSI vertritt außerdem die Interessen der deutschen Astronomen im Projekt, unterstützt die deutschen Wissenschaftler bei dem Bau deutscher Instrumente und steht in ständigem Kontakt mit der German SOFIA Science Working Group (GSSWG).
Der amerikanische Partner ist für die Modifikation des ehemaligen Langstrecken - Flugzeugs, den Einbau des Teleskops und den Test des Observatoriums verantwortlich. Die Flugtests und der Flugbetrieb werden unter Federführung des NASA Dryden Flight Research Center (DFRC) nördlich von Los Angeles dürchgeführt. Das NASA Ames Research Center ( ARC) südlich von San Francisco wird die wissenschaftliche Nutzung und später die astronomischen Beobachtungesflüge vorbereiten und durchführen.
Bei der Erfüllung der Aufgaben des DSI sind verschiedene Partnern beteiligt:
Institute der Universität Stuttgart:
Die folgenden sechs Institute der Fakultät "Luft- und Raumfahrttechnik und Geodäsie" der Universität Stuttgart bringen ihr kompetentes Fachwissen ins SOFIA Projekt ein:
Institut für Flugmechanik und Flugzeugregelung (IFR)
Institut für Flugzeugbau (IFB)
Institut für Aerodynamik und Gasdynamik (IAG)
Institut für Luftfahrtsysteme (ILS)
Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen (ISD)
Institut für Luftfahrtantriebe (ILA)
Steinbeis - Transferzentrum Raumfahrt (TZR):
Das TZR implementiert für das DSI das Datenmanagement für die Planungsdatenbank und den sicheren Datenaustausch zwischen USRA, NASA sowie den anderen SOFIA Projektpartnern. Es unterstützt außerdem das DSI im Hinblick auf einen möglichen Technologietransfer von und zur Industrie.
Flughafen Stuttgart GmbH:
Ein- bis zweimal im Jahr wird SOFIA in Stuttgart landen. Der Flughafen Stuttgart stellt hierbei die nötigen Start- und Landemöglichkeiten zur Verfügung und ermöglicht verschiedenen Forschergruppen und der Öffentlichkeit den Zugang zum Observatorium.

Neuer Focal Plane Imager meistert Generalprobe mit Bravour

Am 12. und 14. Februar 2013 ist der neue Focal Plane Imager (FPI) des DSI an Bord von SOFIA erfolgreich getestet worden.  Projektleiter Jürgen Wolf hatte zuvor mit seinen Kollegen Enrico Pfüller und Manuel Wiedemann die entscheidenden Verbesserungen vorgenommen und unter anderem eine empfindlichere, schnellere Kamera samt angepasster Steuerungseinheit sowie ein neues Filterrad installiert. Beim Einbau der neuen Kamera und der Anpassung des SOFIA Teleskopsystems, z.B. bei der Einführung neuer, kameraspezifischer Kommandos, hat das DSI Team in Palmdale (Kalifornien), allen voran Holger Jakob und Marco Lentini, Wolf und sein Team tatkräftig unterstützt. Auch die System- und Softwarespezialisten der deutschen Firmen Kayser-Threde, 4D Engineering und Stock Flight Systems haben dem DSI Team professionell zur Seite gestanden.


Bild 1: Der FPI am SOFIA Teleskop (links) und das neue Filterrad (rechts) für den Sloan-Filtersatz (u‘,g‘,r‘,i‘,z‘). Im unteren Drehkörper befinden sich Abschwächungsfilter verschiedener Stärken, die bei der Nachführung an hellen Sternen benötigt werden.


Der FPI ist ein echtes Multifunktionsgerät und hat insgesamt drei Aufgaben:
Zusammen mit dem Wide Field Imager (WFI) und dem Fine Field Imager (FFI) dient er als Sucher- und Leitkamera des SOFIA - Teleskops. Dazu muss er empfindlich sein und über eine gute räumliche Auflösung verfügen, um auch mit schwachen Sternen (V ≤ 16 mag) oder in überfüllten Sternenfeldern das SOFIA Teleskop leiten zu können.
Als schnelle Diagnosekamera soll er die Ausrichtgenauigkeit und Stabilität des gesamten Teleskopsystems testen, die unter anderem durch hoch-frequente Störmechanismen wie Flugzeugvibrationen oder Windlasten im Flug verursacht werden. Dazu ist die Kamera schnell und kann kleinere Bildausschnitte 400 Mal pro Sekunde auslesen.
Der FPI ist hervorragend für spezielle wissenschaftliche Beobachtungen geeignet, bei denen ein Detektor mit hoher Empfindlichkeit, guter räumlicher Auflösung und hoher Auslesegeschwindigkeit benötigt wird.
Am 12. Februar hob SOFIA um 21:43 Uhr Ortzeit von der Dryden Aircraft Operation Facility (DAOF) zum ersten Testflug des FPI ab. Etwa sieben Stunden später konnte sich „Kamera Operator“ Enrico Pfüller entspannt zurücklehnen: Seine Arbeit war getan und die wesentlichen Testpunkte konnten erfolgreich abgeschlossen werden. Nach ersten Analysen der Daten bestätigt Datenanalyst Manuel Wiedemann, dass das SOFIA Teleskop erfolgreich auf dem Stern SA 104-338 mit der Helligkeit V = 16,06 mag nachgeführt werden konnte und der FPI sämtliche Anforderungen des Observatoriums erfüllt.
Bild 2: Das Feld um den Stern SA 104-338 der Helligkeit V = 16,06 mag. Links - produziert mit Stellarium (Planetariumsprogramm). Rechts - aufgenommen mit dem FPI ohne Filter und bei einer Belichtungszeit von zwei Sekunden. Der Durchmesser des FPI Gesichtsfeldes beträgt 8,5 Bogenminuten.
In der Nacht vom 14. Auf den 15. Februar wurde dann die Eignung für die geplanten wissenschaftlichen Einsätze überprüft und auch hier kann das FPI Team einen Erfolg vermelden: In den drei Farbfiltern g‘, r‘ und i‘ konnte das Trapez im Orionnebel in je nur fünf Millisekunden (5/1000 Sekunden) ausreichend tief für eine erste astronomische Analyse belichtet werden: Ein Großteil der rot dargestellten Objekte sind junge Sterne, die  im nahen Infraroten (i‘ Filter)  mit dem FPI nachgewiesen werden können,  im Optischen jedoch hinter den Staubstrukturen unsichtbar bleiben. „Der FPI hat seine Generalprobe mit Bravour bestanden“, freut sich Jürgen Wolf. „Jetzt sind wir bereit für unsere Messungen!“
Bild 3: Links - das Sternbild Orion mit TheSky6. Mitte - 3 Farbenbild (R,G,B) von M42 (© Gerald Willems, AVL). Rechts - 3 Farbenbild vom Trapez/M42 mit dem neuen FPI. Belichtungszeit pro Filter 5/1000 Sekunden.
Als Leitkamera wird der FPI permanent bei allen astronomischen Beobachtungen am SOFIA Teleskop angebracht sein. Die ersten wissenschaftlichen Einsätze stehen bereits Ende April und Anfang Mai im Rahmen der Beobachtungen einer Plutobedeckung und den Durchgängen von Exoplaneten an. Bei diesen kurzzeitigen und lichtschwachen Ereignissen wird die volle Leistungsfähigkeit des FPI gefragt sein.
Sternentstehung nahe des Galaktischen Zentrums
US Astronomen haben mit SOFIA neue Infrarot -Aufnahmen des Milchstraßenzentrums gewonnen und dabei einen Ring aus Staub und Gas untersucht, der einen Durchmesser von etwa sieben  Lichtjahren besitzt und das supermassive schwarze Loch im Zentrum unserer Galaxie umgibt. Außerdem haben sie einen benachbarten, im optischen Licht von Staub verhüllten, Haufen extrem leuchtstarker und junger Sterne  beobachtet.
Diese Objekte sind vermutlich durch heftige Sternentstehungsphasen im Zentralbereich der Milchstraße entstanden, die vor einigen Millionen Jahren stattgefunden haben. Mit dem SOFIA Instrument FORCAST konnten nun die bislang schärfsten Bilder dieser Regionen bei Wellenlängen von 20, 32 und 37 Mikrometern aufgenommen und analysiert werden. Mit diesen neuen Daten ist eine genauere Untersuchung  der physikalischen Bedingungen in der Nähe unseres Milchstraßenzentrums möglich. Auch der tatsächlichen Verbindung zwischen dem schwarzen Loch im Zentrum und den Sternentstehungsgebieten kann mit diesen Daten auf den Grund gegangen werden.



SOFIA ist in der Lage, Bereiche des Infrarot-Spektrums abzudecken, die den erdgebunden Observatorien bislang verschlossen geblieben sind. Und dies bei einer räumlichen Auflösung, die bisherige IR-Satelliten nie erreichen konnten. Auf dieser Seite erfahren Sie welche Beobachtungsobjekte für SOFIA besonders interessant sind.


Nicht nur die Milliarden Sterne in jeder Galaxie entwickeln sich und haben eine Geschichte, auch die Galaxien selbst durchlaufen verschiedene Entwicklungsstadien und altern. Über die Entwicklung und Bildung von Galaxien - auch unserer eigenen, der Milchstraße - wissen wir vergleichsweise wenig. Bilder aus der Kinderstube der Galaxien sind von größter Bedeutung. Dazu muss man aber in die kosmische Vergangenheit von 10 - 15 Milliarden Jahre zurückschauen. Das Licht dieser Galaxien ist so stark rotverschoben, dass ihre Lichtwellen inzwischen zehnmal länger sind, als zum Zeitpunkt ihrer Abstrahlung. Das Maximum der ohnehin schwachen Strahlung dieser jungen Galaxien liegt nun im Infraroten.
Modellrechnungen zeigen, dass die meisten Galaxien mindestens schon einmal in eine Kollision mit einer anderen Galaxie verwickelt gewesen sein müssen. Bei diesen nahen Vorübergängen oder direkten Zusammenstössen entstehen Schockwellen, Turbulenzen und partielle Aufheizungen der Gasmassen und Staubpartikel. Staubteilchen werden z. B. auf 20 - 60 K aufgeheizt und strahlen dann im Infraroten zwischen 50 und 150 μm. Ein Spektralbereich, in dem SOFIA besonders empfindlich ist und mit hoher Auflösung arbeitet.
Unser Verständnis der Entstehungsprozesse von Sternen kleiner und großer Masse hat in den letzten Jahren große Fortschritte gemacht. Trotzdem sind Fragen offen: Gibt es eine untere oder obere Grenze für die Masse bei der Sternentstehung? Welchen Einfluss haben Strahlungsfelder, Winde und andere Umgebungsbedingungen?
Unglücklicherweise kann man die frühen Stadien der Sternentwicklung bisher nicht vom Boden aus beobachten, weil die typischen Temperaturen von 20K bis 200K mit Infrarotstrahlung zwischen 15 und 150 μm verbunden sind. Die bisherigen Infrarot-Teleskope auf Satelliten hatten eine zu geringe räumliche Auflösung. Ein prädestiniertes Feld für SOFIA!
Der Raum zwischen den Sternen ist nicht leer, sondern mit sogenannter "interstellarer Materie" angefüllt. Obwohl sie nur einige Prozent der Masse einer Galaxie ausmacht, kann man durch ihre Beobachtung sehr viel über die Entwicklungsgeschichte ihrer Umgebung lernen.Die Temperaturen von wenigen 10 Grad Kelvin erzwingen wiederum eine Beobachtung im nahen und fernen Infraroten. Besonders für die Untersuchung der Kontinuum- und Linienstrahlung im MIR und FIR ist SOFIA prädestiniert. Aus den Linien eines Spektrums kann man eindeutig auf das Vorhandensein verschiedener Spezies von Atomen oder Molekülen schließen. Für diese Aufgabe wird auf SOFIA ein Heterodynspektrometer zum Einsatz kommen.
Präsolare Nebel, zirkumstellare Staubhüllen und Staubringe sind die Bausteine eines Sonnensystems und nach heutiger Vorstellung eng mit der Entstehung von Leben verknüpft. Unser Sonnensystem ist offensichtlich der geeignete Ort, um die Bedingungen und Vorgänge zu untersuchen, die zur Entstehung von Planeten und der Entwicklung ihrer Oberflächen und Atmosphären geführt haben und nach Spuren von präbiotischen Molekülen zu suchen. Kometen und Asteroiden stammen aus der Frühzeit unseres Sonnensystems und sind seither unverändert geblieben. Sie sind daher neben den entwickelten Planeten und ihren Satelliten ein ideales Beobachtungsziel, um Informationen über die Ursprünge unseres Sonnensystems zu erhalten.
Mit SOFIA's Vorgänger, dem Kuiper Airborne Observatorium, wurde am 10. März 1977 während einer Sternbedeckung durch Uranus ein Ringsystem um diesen Planeten entdeckt. Eine astronomische Sensation: Saturn wurde seiner herausgehobenen Stellung als einziger Planet mit einem Ring beraubt und eine Sternstunde für die Flugzeugastronomie.
Die Planeten sind Spiegelbild der Verhältnisse während der Bildung unseres Sonnensystems. SOFIA kann sowohl die Bestandteile der Atmosphären näher untersuchen als auch - wegen seiner hohen räumlichen Auflösung - die Transportverhältnisse der Atmosphärengase und die Wetterbedingungen. Die Gasriesen sind Spiegelbild der Verhältnisse während der Bildung unseres Sonnensystems. SOFIA kann sowohl die Bestandteile der Atmosphären näher untersuchen als auch die Transportverhältnisse der Atmosphärengase und Wetterbedingungen analysieren.
Die Zusammensetzung eines Kometen entspricht dem präsolaren Urnebel, aus dem sich die Sonne und die Planeten gebildet haben. Kommt ein Komet in die Nähe der Sonne, so verdampfen seine Bestandteile, die mehrere Milliarden Jahre unberührt waren. Der Nachweis von Wasser, Kohlendioxid und anderen, organischen Kohlenstoffverbindungen kann nicht vom Erdboden aus erfolgen, da deren charakterische Strahlung im Infraroten liegt und daher von der Erdatmosphäre blockiert wird.
SOFIA kann durch seine Arbeitshöhe und flexible Einsetzmöglichkeit auf beiden Hemisphären Kometen und Asteroiden gut beobachten und untersuchen


Start der Entwicklungs-Phase: Januar 1997
Beginn des Umbaus in Waco, Texas: Januar 1999
Umbau und Teleskopintergation beendet: Februar 2006
Ground Vibration Test erfolgreich durchgeführt: Juni 2006
Triebwerkstest bis an die Leistungsgrenze August 2006
Neue Lackierung September 2006
Erster Testflug nach dem Umbau April 2007
Erster Flug mit geöffneter Beobachtungsluke 18.12.2009
Geplante Lebensdauer: 20 Jahre
Zahl der Beobachtungsflüge pro Jahr: ca. 160
Teleskop-Plattform: Boeing 747SP Flugzeug 
Rolltür als Teleskopöffnung auf der Backbord-Seite des hinteren Rumpfes
Flughöhe für astronomische Beobachtungen: 12000-14000 m 
(39.000 bis 45.000 ft)
Beobachtungszeit in 39.000 ft oder höher: > 6 Stunden
Gesamtbeobachtungszeit pro Jahr: > 960 Stunden
Umgebungstemperatur im Teleskopraum: 210 bis 330 K
Betriebsmannschaft: 3 Personen im Cockpit 
10-15 Operateure / Techniker / Wissenschaftler / Ausbilder
Heimat Basis:
  • NASA Ames Research Center, Moffett Field, Kalifornien;
    regelmäßige Flüge in der südliche Hemisphäre vom US Stützpunkt in Christchurch, Neuseeland
  • regelmäßige Besuch am Flughafen Stuttgartund anderen deutschen Flughäfen


Baubeginn des Teleskops September 1997
Überführung nach Waco,Texas, wo der Einbau ins Flugzeug durchgeführt wird September 2002
Gewicht des Teleskops 
inkl. wissenschaftlichem Instrument:
ca. 20.000 kg
Konfiguration: Cassegrain-Teleskop mit Nasmyth Fokus, permanenter Zugang zum Wissenschafts-Instrument von der Kabine während der Mission
Struktureller Aufbau: CFRP-Struktur in Hantelform, Spiegeltubus in Gitterbauweise
Rotations Isolations System: hydrostatisches Lager mit 2 Ring-Segmenten, 1.200 mm Durchmesser, 10-30 bar Versorgungsdruck
Antriebssystem für Rotation: Schnellantrieb für Elevation and Feinantrieb (bürstenloser gekrümmter Gleichstrom-Linearmotor) für Elevation, Cross-Elevation and Line-of-sight (L.O.S.)
Vibrations Isolations System: je 12 Luftfeder/Dämpferelemente in Längs- und Tangentialrichtung um das Hydrostatische Lager
Primärspiegel (PM) : Durchmesser 2,70 m, effektive Öffnung 2,50 m, leichtgewichtete ZERODUR Struktur auf 18-Punkt Whiffle-Tree Support, PM Blendenzahl f/1,28, Aluminium-vergütet
Sekundärspiegel (SM) : SiC-Material, 352 mm Durchmesser, Aluminium-vergütet
SM Funktionen: Fokussierung, Alignment, Chopping (2-Achsen in beliebiger Richtung, Offset, 3-Punkt, stationär)
Tertiärspiegel 2 ebene Spiegel, teildurchlässig (Gold-vergütet) und reflektierend (Aluminium-vergütet)
Blendenzahl des Gesamtsystems: f/19,6
Spektralbereich: 0,3 bis 1.600 Mikrometer
Unvignettiertes Gesichtsfeld: 8 arcmin
Bewegungsbereiche: Elevation 15-70 Grad (20-60 Grad unvignettiert), Cross-Elevation und L.O.S. ° 3,0 Grad
Bild-Qualität: 80% Energie in Kreis mit 1,5 arcsec Durchmesser bei 0,6 Mikrometer Wellenlänge
Bild-Stabilität: 0,2 arcsec rms für On-Axis Focal Plane Tracking
Quelle: SOFIA-Stuttgart


Samstag, 6. April 2013 - 19:58 Uhr

Raumfahrt - USCV-1: NASA Planer verschieben erste kommerzielle ISS Crew Mission auf Ende 2017


The first NASA crew to ride to the International Space Station on a commercial spacecraft may have to wait until at least the end of 2017, after NASA’s planning group realigned the US Crew Vehicle -1 (USCV-1) mission to a launch date of November 30, 2017. The new schedule includes the Russian Soyuz manifested as a back-up option, through to at least 2019.

Commercial Crew:

NASA’s Commercial Crew Program is currently funding three private companies to build transportation systems that can remove NASA’s reliance on the Russian Soyuz to ferry American astronauts to the International Space Station (ISS).

This process is currently in the Commercial Crew integrated Capability (CCiCAP) stage, maturing from the Commercial Crew Development (CCDev) drive that resulted in three companies earning NASA money to develop their spacecraft to be able to carry NASA astronauts.

The current favorite is understood to be SpaceX, who have already conducted three successful missions to the ISS with the cargo version of their Dragon spacecraft, launched via the company’s Falcon 9.

However, they are by no means runaway favorites, with Boeing’s CST-100 already setting up base at the Kennedy Space Center (KSC), and Sierra Nevada Corporation’s Dream Chaser spaceplane offering NASA “dissimilar redundancy” as the only option that isn’t a capsule.

Both CST-100 and Dream Chaser will also use the hugely reliable Atlas V as their launch vehicle of choice.

All three companies have been reporting steady progress during the development phase, with Boeing the latest to make a positive announcement about their crew-capable spacecraft

Friday’s update noted they had successfully completed a Preliminary Design Review (PDR) on the Launch Vehicle Adapter (LVA) – the component that will be used to connect the CST-100 to the Atlas V’s Centuar Upper Stage.

The review is one of six performance milestones Boeing has completed for the CCiCap initiative, a process that totals 19 milestones under NASA’s $460m award. The company also completed the recently completed the Engineering Release (ER) 2.0 software review and the Landing and Recovery Ground Systems and Ground Communications design review.

“The PDR was an outstanding integrated effort by the Boeing, ULA and NASA teams,” said John Mulholland, vice president and program manager of Boeing Commercial Programs. “The ULA design leverages the heritage hardware of the Atlas V to integrate with the CST-100, setting the baseline for us to proceed to wind tunnel testing and the Launch Segment-level PDR in June.”

All three CCiCAP companies have confirmed they are targeting a crewed test of their spacecraft sometime in the 2016 time frame – with SpaceX hinting they may be ready by 2015. Notably, the crews will be selected internally, from within the company roster, as opposed to using NASA astronauts.

Should the test missions prove to be successful, a winning company will be selected by NASA to conduct the first crewed mission to the International Space Station – a mission known as US Crew Vehicle -1 (USCV-1).

As of November of last year, the launch date for USCV-1 was November 30, 2016 – per the Flight Planning Integration Panel (FPIP) presentation (L2), resulting in a docking to the Node 2 Forward port – via the use of an ISS Docking Adapter (IDA) attached to PMA-2 – on December 2, 2016

However, the March update for the FPIP presentation (L2)shows a full one year slip to the USCV-1 mission, with a launch date penciled in for November 30, 2017, followed by a docking on December 2, 2017.

The USCV-2 through to USCV-6 are shown to launch at intervals of six months, with a Russian Soyuz penciled in to provide a back up role “in the event the US Crewed Vehicle is unavailable” through to the USCV-4 mission in 2019.

The slip is not official and the FPIP presentation is a planning document, meaning its information is preliminary. However, like its Shuttle equivalent – the Flight Assignment Working Group (FAWG) documents (L2) – changes to the schedule always begin at this stage of planning, and almost always become the reality.

Click here for Commercial Space Articles:

As to the reason for the slip, sources point to the squeeze on long-term funding projections as the major schedule driver.

Also, according to Russian media, NASA began negotiations with Roscosmos in February, with a view to extending their deal to purchase seats on the Russian Soyuzby another year, taking the arrangement into the middle of 2017.

A confirmed delay to the USCV flights will impact the ISS in several ways, not least because the USCV missions will carry four crewmembers, meaning that once they dock to the ISS, the crew of the station will be boosted to seven – allowing significant extra research activities to be performed.

Notably, one of the crewmembers on the USCV will be Russian – just as one American crewmember will continue to be rotated on the Soyuz. This is done in order to ensure that a US crewmember is always present on the ISS, even when no USCV is docked to the station.

It is not known at this point whether the seat on the USCV will be provided to Russia in exchange for a US seat on the Soyuz.

(Images: L2 Content, SNC, ULA, Boeing)

(NSF and L2 are providing full transition level coverage, available no where else on the internet, from Orion and SLS to ISS and CRS/CCP, to European and Russian vehicles.

Quelle: NASA


Samstag, 6. April 2013 - 10:00 Uhr

Raumfahrt - Vor 40 Jahren startete Pioneer 11-Sonde ins All


NASA Celebrates Four Decades of Plucky Pioneer 11


Forty years ago, on April 5, 1973, a small, ambitious spacecraft launched from Cape Canaveral, heading towards the third-brightest point of light in the night sky. Following in the footsteps of its sister craft, Pioneer 10, Pioneer 11 was intended as a backup for the dangerous mission. A single additional instrument, a Flux-Gate Magnetometer, was the only difference between Pioneer 11 and the craft that had already become the first human-made object to leave the inner solar system and was well on its journey to the first and most massive of the gas giant planets, Jupiter.

By the beginning of 1974, Pioneer 10’s journey to Jupiter had proved to be an unmitigated success - the craft had sustained no damage through the asteroid belt, little lasting radiation damage during it’s encounter with Jupiter and had returned far greater volumes of scientific data than expected. After Pioneer 10 successfully survived the Jovian encounter, Pioneer 11 was retargeted mid-flight to include another planetary encounter. The science team at NASA's Ames Research Center in California decided not simply to duplicate Pioneer 10’s mission, but to build upon it, directing the small craft to use Jupiter’s massive gravitational pull as a slingshot to propel the craft at a significantly increased velocity (just as had been done to propel Pioneer 10 out the solar system) to the next – and arguably most beautiful – planet in our system, Saturn.

After some pressure from the Voyager team at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., who wanted Pioneer to test the path that Voyager would follow several years later, a decision was made to travel much closer to Jupiter than Pioneer 10. This more risky path was opposed by some of the Pioneer team, but on December 2, 1974, Pioneer 11 passed only 42,000 km (compared to Pioneer 10’s 200,000 km) above Jupiter’s cloud tops. Pioneer 11’s route took the spacecraft over the poles of the planet to avoid the intense radiation belts around Jupiter’s equator. This allowed the first mapping of the planet’s polar regions and sent the craft hurtling through space at a record speed of 172,800 km/h. During its encounter, Pioneer 11 managed to take the most detailed images of the Great Red Spot and calculated the mass of the moon Calisto.

Because of Pioneer 11’s ambiguous status as a combination science and engineering demonstration mission, a heated debate broke out in the NASA community about what route it would take past Saturn. The famous Voyager missions were launched a full two years before Pioneer 11 reached Saturn and were already heading towards Jupiter through what was now known to be virtually risk-free asteroid belt. The Voyager spacecraft were much more sophisticated and cost many times more than the relatively simple Pioneer probes. Voyager 2’s “Grand Tour” of the Solar System (which involved visiting Jupiter, Saturn, Uranus and Neptune) required that the spacecraft travel through Saturn’s outer A ring in order to get close enough to use gravitational assist to propel it to Uranus.

Scientists at the time were unsure of the makeup of the rings and were worried, as they were for Pioneer 10’s journey through the asteroid belt, that the spacecraft might be impacted and destroyed by objects in the ring. The material in the rings (now known to be mainly comprised of water ice) needed, on average, to be smaller than 1 mm, in which case they would be unlikely to damage the spacecraft, or larger than 1 cm so that they would be spaced far enough apart to allow a spacecraft to pass through them. If they fell between these two sizes, then a lethal impact was nearly inevitable. Having already got more than they bargained for, the Pioneer team was ready to go out with a bang. They opted to risk their trusty spacecraft by sending it on a much more dangerous route through Saturn’s mysterious inner rings. This would maximize the scientific effectiveness of the mission and would prove the existence of the suspected D ring between the readily visible C ring and the planet’s upper atmosphere. The team was willing to take the more treacherous, unknown path for the sake of science. The Voyager team, however, had always seen Pioneer as a prelude to their more advanced mission and were adamant that the craft should test the route that Voyager 2 would take through the outer E ring two years later en route to Uranus.

There were convincing arguments on both sides: the Pioneer team argued that the outer path would be too far away from Saturn for either spacecraft to take the measurements the scientists were interested in, while the Voyager team insisted that they could not risk passing through the rings without Pioneer testing them first.

Ultimately, it was decided by NASA Headquarters that Voyager 2’s safe passage to Uranus and Neptune would yield more scientific discovery than Pioneer’s path through the inner rings of Saturn and, to the sound of much booing from the Pioneer team, NASA director of Planetary Programs Tom Young announced Pioneer 11’s trajectory would be to the planet’s outer rings.

Certainly the decision to change Pioneer from a trailblazer into guinea pig, as some saw it, upset a number of the mission’s strongest supporters - especially the scientists who were hoping for another chance to use their instruments fully - but as time has passed, many people have changed their opinion of the contentious verdict.

“It was a controversial decision at the time,” mused Pioneer’s last project manager, Larry Lasher. “But with the brave path it forged, Pioneer 11 was proud to contribute to the success of Voyager 2 in its completion of the “Grand Tour,” and the exploration of two of the outermost planets in our Solar System.”

Despite its altered trajectory, which took it within 21,000 km of the Saturn, Pioneer 11 discovered two new moons (almost smacking into one of them in September 1979) and a new “F” ring. The spacecraft also discovered and charted the planet's magnetic field and magnetosphere, and mapped the general structure of Saturn's interior. The spacecraft's instruments measured the heat radiation from Saturn's interior and found that its planet-sized moon, Titan, was too cold to support life.

Pioneer 11’s mission was only planned to last 21 months – just long enough to reach Jupiter – but in reality, the spacecraft continued functioning for decades after the end of its nominal mission. Pioneer 11’s most important milestone - the first encounter with Saturn - occurred eight months after its projected lifespan, while it became the fourth (Voyagers 1 and 2 had, by this time, overtaken it) human-made object to leave the planetary solar system almost 17 years after its launch on Feb 23, 1990. Thanks to the leadership of its legendary first project manager, Charles Hall, Pioneer could be seen as the prototype for cheaper, better, faster missions that followed in the 1990s.

Pioneer 11, ended its mission on Sept. 30, 1995, when the last transmission from the spacecraft was received. At that time, it took a full 12 hours for a radio signal (traveling at the speed of light) to reach the spacecraft. Currently, it is approximately 13 billion km from the sun and traveling in the direction of the constellation Scutum.


Legendary space scientist James van Allen is seen smoking a pipe alongside physicist Edward Smith at a Pioneer 11 press conference in 1974. Image credit: NASA Ames


Quelle: NASA


Samstag, 6. April 2013 - 09:55 Uhr

Astronomie - Leben auf Jupiter-Mond Europa?


This color composite view combines violet, green, and infrared images of Jupiter's intriguing moon, Europa, for a view of the moon in natural color (left) and in enhanced color designed to bring out subtle color differences in the surface (right). Image credit: NASA/JPL-Caltech/University of Arizona


Mapping the Chemistry Needed for Life at Europa


A new paper led by a NASA researcher shows that hydrogen peroxide is abundant across much of the surface of Jupiter's moon Europa. The authors argue that if the peroxide on the surface of Europa mixes into the ocean below, it could be an important energy supply for simple forms of life, if life were to exist there. The paper was published online recently in the Astrophysical Journal Letters.

"Life as we know it needs liquid water, elements like carbon, nitrogen, phosphorus and sulfur, and it needs some form of chemical or light energy to get the business of life done," said Kevin Hand, the paper's lead author, based at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Europa has the liquid water and elements, and we think that compounds like peroxide might be an important part of the energy requirement. The availability of oxidants like peroxide on Earth was a critical part of the rise of complex, multicellular life."

The paper, co-authored by Mike Brown of the California Institute of Technology in Pasadena, analyzed data in the near-infrared range of light from Europa, using the Keck II Telescope on Mauna Kea, Hawaii, over four nights in September 2011. The highest concentration of peroxide found was on the side of Europa that always leads in its orbit around Jupiter, with a peroxide abundance of 0.12 percent relative to water. (For perspective, this is roughly 20 times more diluted than the hydrogen peroxide mixture available at drug stores.) The concentration of peroxide in Europa's ice then drops off to nearly zero on the hemisphere of Europa that faces backward in its orbit.

Hydrogen peroxide was first detected on Europa by NASA's Galileo mission, which explored the Jupiter system from 1995 to 2003, but Galileo observations were of a limited region. The new results show that peroxide is widespread across much of the surface of Europa, and the highest concentrations are reached in regions where Europa's ice is nearly pure water with very little sulfur contamination. The peroxide is created by the intense radiation processing of Europa's surface ice that comes from the moon's location within Jupiter's strong magnetic field.

"The Galileo measurements gave us tantalizing hints of what might be happening all over the surface of Europa, and we've now been able to quantify that with our Keck telescope observations," Brown said. "What we still don't know is how the surface and the ocean mix, which would provide a mechanism for any life to use the peroxide."

The scientists think hydrogen peroxide is an important factor for the habitability of the global liquid water ocean under Europa's icy crust because hydrogen peroxide decays to oxygen when mixed into liquid water. "At Europa, abundant compounds like peroxide could help to satisfy the chemical energy requirement needed for life within the ocean, if the peroxide is mixed into the ocean," said Hand.

The study was funded in part by the NASA Astrobiology Institute through the Icy Worlds team based at JPL, a division of Caltech. The NASA Astrobiology Institute, based at NASA's Ames Research Center, Moffett Field, Calif., is a partnership among NASA, 15 U.S. teams and 13 international consortia. The Institute is part of NASA's astrobiology program, which supports research into the origin, evolution, distribution and future of life on Earth and the potential for life elsewhere.

Quelle: NASA


Samstag, 6. April 2013 - 09:00 Uhr

Raumfahrt - NASA Crew könnte bis 2021 zu Asteroiden starten


n this artist's concept, an astronaut performs a tethering maneuver at an asteroid. The Space Exploration Vehicle (SEV) is close by, with the Orion Multi-Purpose Crew Vehicle (MPCV) docked to a habitat in the background. / NASA


NASA hopes to start work on a mission that could send astronauts to an asteroid within eight years, U.S. Sen. Bill Nelson said today.

Nelson, who heads the Senate subcommittee that authorizes NASA programs, said the “audacious” plan calls for a robotic spacecraft to capture an asteroid and tow it to a stable orbit around the moon.

Flying in an Orion capsule launched from Kennedy Space Center atop the massive Space Launch System rocket, astronauts would then have a “unique, meaningful and affordable” destination for the next decade, Nelson said.

The space agency could use the asteroid to study mining, ways to deflect the space rocks if they threatened Earth and technologies that might apply to a manned mission to Mars.

"It's really a clever concept,” Nelson said. "This is one of the building blocks of a human mission to Mars."

The Obama administration’s 2014 budget is expected to request $100 million for NASA to jump start the mission, Nelson said.

He said space scientists produced a feasibility study last year on a similar mission last year, saying it would represent “mankind’s first attempt at modifying the heavens to enable the permanent settlement of humans in space.”

NASA plans a first test launch of the SLS rocket with an unmanned Orion in 2017. The first crewed mission was to follow in 2021, but has not yet had a definite destination.

Nelson said the new proposal would accelerate the Obama administration’s goal for astronauts to visit an asteroid, which had been targeted for 2025.

No further details were immediately available on how the asteroid would be captured and how much the total mission would cost.

Nelson planned to discuss the proposal this afternoon in Orlando.

Quelle: Florida-Today


WASHINGTON — It's been a while since NASA's been known as a place for space cowboys.

But the nickname could make a comeback if the space agency can pull off a new mission that even supporters admit sounds buck-wild: corralling an asteroid with a spacecraft so future astronauts can go visit it.

Obama administration officials said the operation has the potential to jump-start a human-exploration program that has floundered since the 2011 retirement of the space shuttle. The White House will include $105 million to begin work on the project in its 2014 budget to be unveiled this week.

"This mission will send humans farther than they have ever been before, and [it would be the] first ever redirection of [an] asteroid for exploration and sampling," noted NASA officials in a mission outline presented to Congress this week and obtained by the Orlando Sentinel.

If lawmakers approve, the plan calls on NASA to launch an unmanned spacecraft as soon as 2017 on a mission to "capture" a small asteroid and drag it near the moon, possibly to a point roughly 277,000 miles from Earth where competing gravitational forces would allow it to "sit" there.

Astronauts, riding a new NASA rocket and capsule, then would visit the asteroid as early as 2021.

"If the American people are excited about it, they [lawmakers] will be, too," said U.S. Sen. Bill Nelson, D-Fla. — adding that he thinks the public is "fascinated" with asteroids thanks to disaster movies such as "Armageddon" and recent near-misses that real space rocks have had with Earth.

But the plan faces several hurdles — and not just the rocket science.

Foremost is convincing Congress, and a skeptical public, that spending an estimated $2.6 billion on the mission is a worthwhile investment. That's in addition to the $3 billion annually that NASA already devotes to building its new Space Launch System rocket and Orion capsule.

Then there's the more-basic question of why.

"You have to get over the first shock, and I'm worried editorial writers will be like: 'Huh? You lost your mind,'" acknowledged Lou Friedman, who co-authored a 2012 report that suggested the idea. "But if you get into it, [the mission] is audacious as sending humans to the moon. I think it will restore confidence in America's technological capability and NASA's can-do spirit."

As proposed, the asteroid mission would begin with research — $78 million in 2014 to begin design work on the robotic spacecraft that would capture the asteroid, and an additional $27 million to begin searching the cosmos for an asteroid to grab. The ideal rock would be 20 to 30 feet in diameter and weigh 500 tons.

A 2012 study done by the Keck Institute for Space Studies, a think tank based at the California Institute of Technology, envisioned a small probe that would launch aboard an Atlas V rocket. Once in space, it would use its solar-electric engines to cruise to an asteroid and then attempt to capture it in a cup-shaped container described as an "inflatable asteroid capture bag."

Even NASA admits this stage would be the "most technically challenging aspect of the mission," as the asteroid would be traveling at thousands of miles per hour and spinning rapidly. The probe would have to first match the asteroid's speed and spin. It would then position itself so that the asteroid drifts into its storage space — and pull it shut like a drawstring bag.

"Since the asteroid would be much more massive than the spacecraft, it is perhaps better to think of this as the asteroid capturing the spacecraft," noted the Keck study.

The probe would then tug the asteroid to an orbit near the moon to await a visit by NASA astronauts. The Keck study estimated the whole operation could take six to 10 years, although NASA officials insist they can do it sooner to meet their 2021 deadline of a human mission.

By any measure, it's an ambitious operation that would test a wide variety of NASA skills — from technology development to human spaceflight.

But there's still the question of why.

From NASA's perspective, the mission checks several boxes.

First, it gives purpose to the huge new SLS rocket and Orion capsule that are costing NASA about $3 billion a year to build, with a first test flight scheduled no earlier than 2017. The SLS has been criticized as a "rocket to nowhere" — as its mission has been defined only vaguely since the program's 2011 unveiling — and the asteroid operation would give it a specific goal.

It also would meet President Barack Obama's challenge to NASA to visit an asteroid by 2025.

Finally, its estimated cost of $2.6 billion, not including the SLS and Orion, fits within NASA's long-range-budget expectations. It would be much cheaper than a manned flight to the moon's surface or a longer-range mission to an asteroid that hasn't been tugged close to the moon.

"It gives us a place to go but one we can reach with existing systems," Friedman said.

It's the kind of rationale that makes sense in the space community.

But NASA likely has some work to do in convincing the general public. Though the flight would make history, sending astronauts to a tiny asteroid lacks the punch of, say, a Mars landing.

Supporters said they understand that. But they argue that getting to Mars — or even doing more on the moon — would be impossible without intermediate steps such as this. Asteroids are "interesting objects in their own right, but the main purpose is as a stepping stone of exploration," Friedman said

Planning documents also make another case: The spacecraft developed by NASA could be a prototype of one that could defend the planet against a rogue asteroid. That's been a hot topic since a 55-foot asteroid exploded over Russia in February, injuring more than 1,000 people, and NASA acknowledged to Congress it would be helpless if a larger, more-deadly asteroid were reported on a collision course with Earth.

There's also the possibility of mining the asteroid for rare materials such as platinum. Though it's unknown whether visiting astronauts would set foot on the asteroid, it's certain any mission would recover rock samples. This could be a first step in developing techniques to mine asteroids in the future.

The rise of this program, however, likely means the death of another.

NASA chief Charlie Bolden pitched the White House last year on the idea of building a small space station near where NASA intends to drag the asteroid; administration officials said that pricey proposal has been shelved in favor of one viewed as more viable given NASA's annual budget of about $18 billion.

"We've had a succession of [human-spaceflight] missions that didn't pan out financially; it would be nice to have one that did," said Howard McCurdy, a space-policy expert at American University.

Quelle:Orlando Sentinel


Quelle: 13News

NASA has plan to capture an asteroid and tow it to the moon

The plan calls for astronauts powered by a new monster rocket to land on the asteroid in just eight years

April 5, 2013

ORLANDO - Tucked inside President Barack Obama’s proposed federal budget for next fiscal year is about $100 million to jump start a program scientists say is the next step towards humans establishing a permanent settlement in space.

That, at least, is what U.S. Sen. Bill Nelson says we’re likely to see when the White House unveils its fiscal year 2014 budget around the middle of next week.  Nelson has been briefed by scientists.  And NASA's decision to ask for funding for the project was first reported by Aviation Week magazine in an article published last week.

In a nutshell, the plan in NASA’s hands calls for catching an asteroid with a robotic spacecraft and towing it back toward Earth, where it would then be placed in a stable orbit around the moon.

Next, astronauts aboard America’s Orion capsule, powered into space by a new monster rocket, would travel to the asteroid where there could be mining activities, research into ways of deflecting an asteroid from striking Earth, and testing to develop technology for a trip to deep space and Mars.

“This is part of what will be a much broader program,” Nelson said today, during a visit in Orlando.  “The plan combines the science of mining an asteroid, along with developing ways to deflect one, along with providing a place to develop ways we can go to Mars.”

It was Nelson (D-FL) with former U.S. Sen. Kay Bailey Hutchison (R-TX) who won passage in Congress in 2010 for funding plans to build a new monster rocket – called SLS - capable of carrying the Orion spacecraft and for or more astronauts out of low-Earth orbit and to the far side of the moon.  The U.S. hasn’t had the ability to do what this new rocket will do - go far beyond low-Earth orbit and lift gigantic payloads - since 1972 and the end of the Apollo Moon program.

Now comes an audacious plan that would use the rocket in just eight years on a manned mission to the captured asteroid.  A similar plan was first suggested last year by space experts at the California Institute of Technology.  The institute was joined in preparing a detailed feasibility study by other institutes, think tanks, laboratories and universities, including the Jet Propulsion Laboratory in Pasadena, California, The Florida Institute for Human and Machine Cognition and the Harvard-Smithsonian Center for Astrophysics.

Their jointly produced Asteroid Retrieval Feasibility Study suggests that bringing a 500-ton asteroid closer to Earth would give astronauts a “unique, meaningful and affordable” destination for the next decade.

Nelson said he thinks NASA’s plan is very similar and that President Obama favors it, as the president already has announced a goal of sending astronauts to a near-Earth asteroid by 2025.  This plan would advance that date by four years to 2021.

“It would be mankind’s first attempt at modifying the heavens to enable the permanent settlement of humans in space,”  scientists have said in the feasibility study.


Weitere 10 Nachrichten nachladen...