Blogarchiv

Sonntag, 21. Februar 2016 - 20:15 Uhr

Astronomie - Chandra X-ray Observatory sieht Glühen vom Urknall bei weit entfernten Schwarzen Loch Jet

.

Astronomers have used NASA's Chandra X-ray Observatory to discover a jet from a very distant supermassive black hole being illuminated by the oldest light in the Universe. This discovery shows that black holes with powerful jets may be more common than previously thought in the first few billion years after the Big Bang.
The light detected from this jet was emitted when the Universe was only 2.7 billion years old, a fifth of its present age. At this point, the intensity of the cosmic microwave background radiation, or CMB, left over from the Big Bang was much greater than it is today.
The length of the jet, found in the system known as B3 0727+409, is at least 300,000 light years. Many long jets emitted by supermassive black holes have been detected in the nearby Universe, but exactly how these jets give off X-rays has remained a matter of debate. In B3 0727+409, it appears that the CMB is being boosted to X-ray wavelengths.
"Because we're seeing this jet when the Universe was less than three billion years old, the jet is about 150 times brighter in X-rays than it would be in the nearby Universe," said Aurora Simionescu at JAXA's Institute of Space and Astronautical Studies (ISAS) who led the study.
As the electrons in the jet fly from the black hole at close to the speed of light, they move through the sea of CMB radiation and collide with microwave photons, boosting the energy of the photons up into the X-ray band to be detected by Chandra. This implies that the electrons in the B3 0727+409 jet must keep moving at nearly the speed of light for hundreds of thousands of light years.
Electrons in black hole jets usually emit strongly at radio wavelengths, so typically these systems are found using radio observations. The discovery of the jet in B3 0727+409 is special because so far almost no radio signal has been detected from this object, while it is easily seen in the X-ray image.
"We essentially stumbled onto this remarkable jet because it happened to be in Chandra's field of view while we were observing something else," explains co-author Lukasz Stawarz of Jagiellonian University in Poland.
Scientists have so far identified very few jets distant enough that their X-ray brightness is amplified by the CMB as clearly as in the B3 0727+409 system. But, Stawarz adds, "if bright X-ray jets can exist with very faint or undetected radio counterparts, it means that there could be many more of them out there because we haven’t been systematically looking for them."
"Supermassive black hole activity, including the launching of jets, may be different in the early Universe than what we see later on," said co-author Teddy Cheung of the Naval Research Laboratory in Washington DC. "By finding and studying more of these distant jets, we can start to grasp how the properties of supermassive black holes might change over billions of years."
These results were published in the January 1st, 2016 issue of The Astrophysical Journal Letters and appear online. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.
Quelle: NASA

Tags: Astronomie 

1418 Views

Sonntag, 21. Februar 2016 - 20:00 Uhr

Astronomie - Neue Anhaltspunkte für Quellen kosmischer Neutrinos

.

This illustration is an example of a hidden cosmic-ray accelerator. Cosmic rays are accelerated up to extremely high energies in dense environments close to black holes. High-energy gamma rays (marked by the “Y” gamma symbol) are blocked from escaping, while neutrinos (marked by the “V”nu symbol) easily escape and can reach the Earth. Credit: Bill Saxton at NRAO/AUI/NSF, modified by Kohta Murase at Penn State University

.

The sources of the high-energy cosmic neutrinos that are detected by the IceCube Neutrino Observatory buried in the Antarctic ice may be hidden from observations of high-energy gamma rays, new research reveals. These high-energy cosmic neutrinos, which are likely to come from beyond our Milky Way Galaxy, may originate in incredibly dense and powerful objects in space that prevent the escape of the high-energy gamma rays that accompany the production of neutrinos. A paper describing the research will be published in the early online edition of the journal Physical Review Letters on February 18, 2016.
 
"Neutrinos are one of the fundamental particles that make up our universe," said Kohta Murase, assistant professor of physics and of astronomy and astrophysics at Penn State and the corresponding author of the studies. "High-energy neutrinos are produced along with gamma rays by extremely high-energy radiation known as cosmic rays in objects like star-forming galaxies, galaxy clusters, supermassive black holes, or gamma-ray bursts. It is important to reveal the origin of these high-energy cosmic neutrinos in order to better understand the underlying physical mechanisms that produce neutrinos and other extremely high-energy astroparticles and to enable the use of neutrinos as new probes of particle physics in the universe."
 
Neutrinos are neutral particles, so they are not affected by electromagnetic forces as they travel through space. Neutrinos detected here on Earth therefore trace a direct path back to their distant astrophysical sources. Additionally, these neutrinos rarely interact with other kinds of matter -- many pass directly through the Earth without interacting with other particles -- making them incredibly difficult to detect, but ensuring that they escape the incredibly dense environments in which they are produced.
 
The high-energy cosmic neutrinos detected by IceCube are believed to originate from cosmic-ray interactions with matter (proton-proton interactions); from cosmic-ray interactions with radiation (proton-photon interactions); or from the decay or destruction of heavy, invisible "dark matter." Because these processes generate both high-energy neutrinos and high-energy gamma rays, the scientists compared the IceCube neutrino data to high-energy gamma rays detected by the Fermi Gamma-ray Space Telescope. "If all of the high-energy gamma rays are allowed to escape from the sources of neutrinos, we had expected to find corresponding data from IceCube and Fermi," said Murase. In previous papers, including one that was featured as an Editorial Suggestion in Physical Review Letters in 2015, Murase and his colleagues showed the power of such a "multi-messenger" comparison. Now, the researchers suggest that the new neutrino data collected by IceCube has lead to intriguing contradictions with the gamma-ray data collected by Fermi.
 
"Using sophisticated calculations and a detailed comparison of the IceCube data with the gamma-ray data from Fermi has led to new and interesting implications for the sources of high-energy cosmic neutrinos," said Murase. "Surprisingly, with the latest IceCube data, we don't see matching high-energy gamma-ray data detected by Fermi, which suggests a 'hidden accelerator' origin of high-energy cosmic neutrinos that Fermi has not detected."
 
In order to explain the multi-messenger data without any of the intriguing contradictions, the scientists propose that the high-energy gamma rays must be blocked from escaping the sources that created them. The researchers then asked what kinds of astrophysical events could produce high-energy neutrinos but also could suppress the high-energy gamma rays detectable by Fermi. "Interestingly, we found that the suppression of high-energy gamma rays should naturally occur when neutrinos are produced via proton-photon interactions," said Murase. The low-energy photons that interact with protons to produce neutrinos in these events simultaneously prevent high-energy gamma rays from escaping via a process called 'two-photon annihilation.' The new finding implies that the amount of high-energy gamma rays associated with the neutrinos that reach the Earth can easily be below the level detectable by Fermi.
 
According to the researchers, the results imply that high-energy cosmic neutrinos can be used as special probes of dense astrophysical environments that cannot be seen in high-energy gamma rays. Candidate sources include supermassive black holes and certain types of gamma-ray bursts. The results also motivate further theoretical and observational studies, such as the use of lower-energy gamma rays or X rays to help scientists understand the origin of high-energy neutrinos and cosmic rays.
 
"The next decade will be a golden era for multi-messenger particle astrophysics with high-energy neutrinos detected in IceCube as well as gravitational waves detected with advanced-LIGO," said Murase. "Our work demonstrates that multi-messenger approaches are indeed very powerful tools for probing fundamental questions in particle astrophysics. I believe that the future is bright and that we will be able to find sources of neutrinos and cosmic rays, probably with other surprising new discoveries."
 
In addition to Murase, the research team includes Dafne Guetta from the Osservatorio Astronomic di Roma in Italy and ORT Braude College in Israel, and Markus Ahlers from the University of Wisconsin.
 
The research was funded by Penn State University, the U.S. Nation Science Foundation (grant numbers OPP-0236449 and PHY-0236449) and by the U.S. Israel Binational Science Foundation.
Quelle: The Pennsylvania State University

Tags: Astronomie 

1379 Views

Sonntag, 21. Februar 2016 - 19:45 Uhr

Astronomie - Grünes Licht für LIGO-India

.

LIGO-India Gets Green Light
Following this month's announcement of the first observation of gravitational waves arriving at the earth from a cataclysmic event in the distant universe, the Indian Cabinet, chaired by Prime Minister Shri Narendra Modi, has granted in-principle approval to the Laser Interferometer Gravitational-wave Observatory in India (LIGO-India) Project. The project will build an Advanced LIGO Observatory in India, a move that will significantly improve the ability of scientists to pinpoint the sources of gravitational waves and analyze the signals. Approval was granted on February 17, 2016.
Gravitational waves—ripples in the fabric of space and time produced by dramatic events in the universe, such as merging black holes, and predicted as a consequence of Albert Einstein's 1915 general theory of relativity—carry information about their origins and about the nature of gravity that cannot otherwise be obtained. With their first direct detection, announced on February 11, scientists opened a new window onto the cosmos.
The twin LIGO Observatories at Hanford, Washington, and Livingston, Louisiana, are funded by the U.S. National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. Advanced LIGO—a major upgrade to the sensitivity of the instruments compared to the first generation LIGO detectors—began scientific operations in September 2015. Funded in large part by the NSF, Advanced LIGO enabled a large increase in the volume of the universe probed, leading to the discovery of gravitational waves during its first observation run.
At each observatory, the two-and-a-half-mile (4-km) long L-shaped interferometer uses laser light split into two beams that travel back and forth down the arms (four-foot diameter tubes kept under a near-perfect vacuum). The beams are used to monitor the distance between mirrors precisely positioned at the ends of the arms. According to Einstein's theory, the distance between the mirrors will change by an infinitesimal amount when a gravitational wave passes by the detector. A change in the lengths of the arms smaller than one-ten-thousandth the diameter of a proton (10-19 meter) can be detected.
According to David Reitze, executive director of LIGO and a Caltech research professor, the degree of precision achieved by Advanced LIGO is analogous to being able to measure the distance between our solar system and the sun's nearest neighbor Alpha Centauri—about 4.4 light-years away—accurately to within a few microns, a tiny fraction of the diameter of a human hair.
"We have built an exact copy of that instrument that can be used in the LIGO-India Observatory," says David Shoemaker, leader of the Advanced LIGO Project and director of the MIT LIGO Lab, "ensuring that the new detector can both quickly come up to speed and match the U.S. detector performance."
LIGO will provide Indian researchers with the components and training to build and run the new Advanced LIGO detector, which will then be operated by the Indian team.
According to a statement from the Indian Cabinet, "LIGO-India will also bring considerable opportunities in cutting edge technology for the Indian industry," which will be responsible for the construction of the new observatory's 4-kilometer-long beam tubes. In addition, the Cabinet statement says, "The project will motivate Indian students and young scientists to explore newer frontiers of knowledge, and will add further impetus to scientific research in the country."
The Indian effort brings together three of the country's top research institutes; the Inter-University Centre for Astronomy and Astrophysics (IUCAA), the Raja Ramanna Centre for Advanced Technology (RRCAT), and the Institute for Plasma Research (IPR). The project is managed by the Department of Atomic Energy and the Department of Science and Technology.
"It is technically feasible for LIGO-India to go online by the end of 2023," says Fred Raab, head of the LIGO Hanford Observatory and LIGO Laboratory liaison for LIGO-India. LIGO scientists have made dozens of trips to India to work with Indian colleagues, especially with the three nodal institutes that would have primary responsibility for construction and operation of LIGO India: IPR Gandhinagar, RRCAT Indore, and IUCAA Pune. "Together, we have identified an excellent site for the facilities and have transferred detailed LIGO drawings of the facilities and vacuum system to IPR, after adapting them for conditions in India," he says.
Scientists at RRCAT have designed a special testing/prototype facility for receiving Advanced LIGO parts; have been training the teams that will install and commission the detector; and are currently cross-checking the IPR vacuum-system drawings against the Advanced LIGO detector drawings, to ensure a good fit and rapid installation for the third Advanced LIGO detector. In addition to leading the site-selection process, IUCAA scientists have been setting up a computing center for current and future data. This preparation should make it possible for India to carry the project forward rapidly.
"LIGO-India will further expand the international network that started with the partnership between LIGO and Virgo, which operates a detector near Pisa, Italy," says Stanley Whitcomb, LIGO chief scientist. "With LIGO-India added to the network, we will not only detect more sources, we will dramatically increase the number of sources that can be pinpointed so that they can be studied using other types of telescopes." That ability is pivotal because combining both gravitational-wave and light-based astronomy enables a much more robust understanding of an observed object's characteristics—in much the same way that lightning is better comprehended through sight and hearing than sight alone.
"The game to see the light from these catastrophic mergers is on," says Mansi Kasliwal, assistant professor of astronomy and the leader of the Caltech effort to search for electromagnetic emission from gravitational waves using the intermediate Palomar Transient Factory, a robotic survey for astrophysical transients (brief, intense flashes of light), and a network of other telescopes. "LIGO India is out of the plane of the other three advanced gravitational-wave interferometers. Thus, it will help narrow down the on-sky location of the gravitational waves tremendously and give a big boost to the astronomers hunting for the light."
Indian astronomers have a long tradition of work in general relativity, gravitational waves, the development of algorithms for gravitational wave detection, and also in the data analysis itself, notes Ajit Kembhavi, emeritus professor at IUCAA Pune and chair of the LIGO-India site-selection committee. "The LIGO-India project provides a great opportunity to take these interests forward and to participate in the rapid development of the field, which may very well come to dominate astronomy for some time," he says.
"LIGO-India will be able to attract young people with a variety of skills from the numerous students who are engaged in strong programs in STEM education," adds Somak Raychaudhury, director of IUCAA Pune.
Fleming Crim, assistant director for mathematical and physical sciences at NSF, praised the expansion of the project, saying, "Because the science reward is so strong, NSF enthusiastically endorses the decision of the Indian government to proceed with authorizing funding for the LIGO-India project."
Gabriela González, a professor of physics at Louisiana State University and spokesperson for the LIGO Scientific Collaboration (LSC), says LIGO will "enable us to answer fundamental questions about the universe that no other type of astrophysics or astronomy can answer." The LSC consists of more than 1000 scientists from more than 90 institutions worldwide, including a large group of researchers in India
The project may also reveal answers to questions no one has yet thought to ask. Notes Reitze: "Any time you turn on some new type of telescope or microscope, you discover things you couldn't anticipate. So while there will be certain sources of gravitational waves that we expect to see, the really exciting part is what we did not predict and what we did not expect to see."
Quelle: Caltech

Tags: Astronomie 

1420 Views

Sonntag, 21. Februar 2016 - 19:30 Uhr

Astronomie - Asteroiden werden zum Teil schon in großer Entfernung von Sonne zerstört

.

Puzzling asteroid and meteor observations can now be explained.
For two decades it was thought that most near-Earth objects (NEOs) end their existence in a dramatic final plunge into the Sun. A new study published in the journal Nature finds instead that most of those objects are destroyed much farther from the Sun than previously thought.
This surprising new discovery explains several puzzling asteroid and meteor observations that have been reported in recent years.
- Initially our aim was to construct a state-of-the-art model of the NEO population that is needed for planning future asteroid surveys and spacecraft missions, says planetary scientist Mikael Granvik, currently at the University of Helsinki.
THE BEST-EVER MODEL
The model that describes the NEOs’ orbit and size distributions was completed as planned, but the research also led to an important advance in asteroid research.
- We modelled different observational selection effects, and combined them with observational data and NEOs’ well-understood, statistical orbit distributions that vary depending on an NEO’s specific source region in the main asteroid belt.
But the team noticed that their model had a problem: the number of NEOs detected was 5 per cent less than the model predicted. They then spent a year verifying their calculations before they came to the conclusion that the problem was not in their analysis but in their assumptions of how the Solar System works.
The model was then modified to the new hypothesis that NEOs are destroyed if they spend too much time within about 10 solar diameters of the Sun, and this lead to an excellent agreement between the model and the observed population of NEOs.
WHY SOME METEOR STREAMS LACK PARENT OBJECTS
The team’s discovery helps to explain several other discrepancies between observations and predictions of the distribution of small objects in our Solar System.
- Astronomers have been unable to match most of the meteor streams on orbits closely approaching the Sun with known parent objects, says Granvik.
He and his research team now suggest that the parent objects were completely destroyed when they came too close to the Sun.
The team can now also explain why NEOs that approach closer to the Sun are brighter than those that keep their distance from the Sun.
DARKER ASTEROIDS ARE MORE EASILY DESTROYED
- Darker asteroids that have been orbiting closer to the Sun have already been destroyed. The fact that dark objects are more easily destroyed implies that dark and bright asteroids have a different internal composition and, possibly, structure.
According to Granvik, their discovery of the catastrophic loss of asteroids before a collision with the Sun allows planetary scientists to understand a variety of recent observations from a new perspective.
- Perhaps the most intriguing outcome of this study is that it shows that it shows that one must account for the asteroids’ physical properties when constructing population models.
- In simple terms one can say that it is now possible to test models of asteroid interiors simply by keeping track of their orbits and sizes.
This research led by Mikael Granvik is published in Nature, 18 February.
Quelle: University of Helsinki

Tags: Astronomie 

1482 Views

Sonntag, 21. Februar 2016 - 16:00 Uhr

Raumfahrt - ESA ExoMars Mission 2016 - Update-1

.

18.06.2013

ESA’s mission to Mars in 2016 has entered the final stage of construction with the signature of a contract today with Thales Alenia Space at the Paris Air & Space Show.
ExoMars will fly two missions, in 2016 and 2018, in a partnership between ESA and the Russian space agency, Roscosmos. Its main goal is to answer one of the outstanding scientific questions of our time: has life ever existed on Mars?
In addition, ExoMars will develop new European technical capabilities in landing, roving, drilling and preparing samples to pave the way for a future Mars sample-return mission in the 2020s.
The first mission will be launched in 2016 and will include the Trace Gas Orbiter (TGO) to search for evidence of methane and other atmospheric gases that could be signs of active biological or geological processes.
It will also deliver the Entry, Descent and Landing Demonstrator Module (EDM) to the surface of Mars, to demonstrate key technologies needed for the 2018 mission and future landing missions.
The 2018 mission will land a rover on Mars – the first with the capability of drilling to depths of 2 m to collect samples that have been shielded from the harsh conditions on the surface, where radiation and oxidants can destroy organic materials.
In addition, the 2018 mission carries a Surface Platform with scientific instruments to investigate the martian environment.
The agreement, signed today in the ESA pavilion at the Paris Air & Space Show, marks a major milestone for the mission and for Thales Alenia Space, the industrial prime contractor on ExoMars.
“The award of this contract provides continuity to the work of the industrial team members of Thales Alenia Space on this complex mission, and will ensure that it remains on track for launch in January 2016,” noted Alvaro Giménez, ESA’s Director of Science and Robotic Exploration.
The agreement was signed by Prof Giménez and Vincenzo Giorgio, Vice President Exploration & Science of Thales Alenia Space during a ceremony attended by the Agency’s Director General, Jean-Jacques Dordain. Also attending were Maria Carrozza, the Italian Minister for Education, Universities and Research, Enrico Saggese, President of the Italian space agency, and Jean-Loïc Galle, CEO of Thales Alenia Space.
For the 2016 mission, Thales Alenia Space Italy is building the EDM, which is currently completing structural tests at the company’s laboratories in Turin. TGO’s orbiter is being built at Thales Alenia Space’s site in Cannes, France.
The first mission will be launched in January 2016, arriving at Mars nine months later. The second mission is scheduled for launch in May 2018, arriving at the planet in early 2019.
Quelle: ESA
.
Update: 4.02.2014
.
.
EXOMARS  ORBITER CORE MODULE COMPLETED
.
The ExoMars Trace Gas Orbiter module consisting of the spacecraft structure, thermal control and propulsion systems was handed over by OHB System to Thales Alenia Space France at a ceremony held in Bremen, Germany, today.
The delivery marks an important step in the ExoMars programme, a joint endeavour between ESA and Russia’s Roscosmos space agency.
Comprising two missions that will be launched to Mars in 2016 and 2018, respectively, ExoMars will address the outstanding scientific question of whether life has ever existed on Mars by drilling the surface of the planet and analysing in situ the samples. The ExoMars programme will also demonstrate key technologies for entry, descent, landing, drilling and roving on the martian surface.
The Trace Gas Orbiter, or TGO, will be launched in 2016 along with Schiaparelli – the entry, descent and landing demonstrator module.
TGO will search for evidence of methane and other atmospheric gases that could be signatures of active biological or geological processes on Mars. It will also serve as a communications relay for the 2018 rover and surface science platform.
Today’s handover at OHB headquarters marks the end of an intense construction and test period readying this core module to be used as the basis for integration of other TGO subsystems and units, including the science instruments.
The ceremony was attended by ESA’s Director General, Jean-Jacques Dordain, who met representatives of the ExoMars industrial consortium to celebrate this important milestone.
“ExoMars is a challenging project, a premiere for Europe, and, in some aspects, a premier in the world,” noted Mr Dordain.
“Thanks to the expertise of our industrial partners here in Germany we are on track to deliver this crucial element of the 2016 mission. We are already looking forward to the significant scientific discoveries that TGO will make on our quest to understand the evolution of planet Mars, a sister planet of Earth, and in particular, if life has ever existed on Mars.”
Marco Fuchs, CEO of OHB said: “The timely release marks a key step in the development of the ExoMars programme. We are proud to be part of this ambitious international science and research program.”
“This was a very pleasant start to my new position as aviation and space coordinator. With the ExoMars programme, the German space industry is demonstrating its outstanding skills,” said Brigitte Zypries after the core module was handed over.
OHB System AG is a member of the European industrial syndicate that is responsible for developing the Mechanical, Thermal and Propulsion core module of the Trace Gas Orbiter for the 2016 mission with ExoMars prime contractor Thales Alenia Space.
TGO and Schiaparelli will be launched in January 2016, arriving at Mars nine months later. The second mission, with ESA’s rover and the Russian surface platform, is scheduled for launch in May 2018, arriving at the planet in early 2019. Roscosmos is the main partner of ESA on ExoMars.
Quelle: ESA
.
Update: 9.02.2014
.

The ExoMars Trace Gas Orbiter module consisting of the spacecraft structure, thermal control and propulsion systems was handed over by OHB System to Thales Alenia Space France at a ceremony held 3 February 2014 in Bremen, Germany.

Comprising two missions that will be launched to Mars in 2016 and 2018, respectively, ExoMars will address the outstanding scientific question of whether life has ever existed on Mars by drilling the surface of the planet and analysing in situ the samples. The ExoMars programme will also demonstrate key technologies for entry, descent, landing, drilling and roving on the martian surface.

The Trace Gas Orbiter, or TGO, will be launched in 2016 along with Schiaparelli – the entry, descent and landing demonstrator module.

Quelle: ESA

.
Update: 12.07.2014 
.

Airbus Defence and Space completes production of heat shields for 2016 ExoMars mission


Airbus Defence and Space, the world’s second largest space company, has just completed the production of the two heat shields for the first European ExoMars mission in 2016. These shields will protect the Schiaparelli capsule when it descends through the Martian atmosphere. They will be delivered shortly to Thales Alenia Space (TAS), the prime contractor on behalf of the European Space Agency (ESA).
The Schiaparelli shields were developed by the Space Systems teams at Airbus Defence and Space, primarily at its site in Saint-Médard-en-Jalles, near Bordeaux (France). Airbus Defence and Space, as one of the main contributors to the rover of the 2018 ExoMars mission, is responsible for the development of the rover vehicle, in parallel to its work for the 2016 mission. The ExoMars rover will be able to navigate autonomously on the surface of Mars as it searches for the existence of past or present life.
“The Airbus Defence and Space teams have built up unrivalled expertise in the field of planetary exploration, including for example the shield for the Huygens space probe which successfully touched down on Titan in 2005,” said François Auque, Head of Space Systems. “From complex initial studies to proven technology for atmospheric re-entry for the Earth and other planets, we are now working on the next generation of thermal protection materials and systems, which could be used to bring back samples from planets or the space station.”
The Schiaparelli’s front shield, which has a diameter of 2.4 metres and weighs 80 kilogrammes, is made up of a carbon sandwich structure covered with 90 Norcoat Liege insulating tiles. During the atmospheric entry phase, the material is built to withstand temperatures of up to 1,850°C before being jettisoned. The rear shield, which contains the parachute, deployed during the descent, weighs a mere 20 kilogrammes and is composed of 93 tiles of 12 different types, affixed to the carbon structure. The probe’s equipment is integrated into the front shield, then covered with the rear shield before final assembly in Baikonur in preparation for launch.
Schiaparelli, also known as the Entry, Descent and Landing Demonstrator Module (EDM), will not only demonstrate Europe’s ability to perform a controlled landing on the surface of Mars, but also carries scientific instruments to improve our knowledge of the Red Planet. In this type of mission, the atmospheric entry phase is crucial, and the front and rear heat shields will be key elements in the demonstration.
The first ExoMars mission is scheduled to begin in January 2016 on a Proton rocket. It will comprise a satellite, the Trace Gas Orbiter (TGO) that will go into orbit around Mars, and a capsule, Schiaparelli, that will enter the atmosphere of Mars before touching down on the Red Planet.
Quelle: Airbus
.
Update: 2.10.2014
.
FOUR CANDIDATE LANDING SITES FOR EXOMARS 2018

Rover landing site candidates
.
Four possible landing sites are being considered for the ExoMars mission in 2018. Its rover will search for evidence of martian life, past or present.
ExoMars is a joint two-mission endeavour between ESA and Russia’s Roscosmos space agency. The Trace Gas Orbiter and an entry, descent and landing demonstrator module, Schiaparelli, will be launched in January 2016, arriving at Mars nine months later. The Rover and Surface Platform will depart in May 2018, with touchdown on Mars in January 2019.
The search for a suitable landing site for the second mission began in December 2013, when the science community was asked to propose candidates.
The eight proposals were considered during a workshop held by the Landing Site Selection Working Group in April. By the end of the workshop, there were four clear front-runners.
Following additional review by an ESA-appointed panel, the four sites have now been formally recommended for further detailed analysis.
.
Mawrth Vallis is one of four candidate landing sites under consideration for the ExoMars 2018 mission. It is one of the oldest outflow channels on Mars, at least 3.8 billion years old. It hosts large exposures of finely layered clay-rich rocks, indicating that water once played a role here.
The image combines HRSC images from ESA Mars Express with MOLA topography data from NASA’s Mars Global Surveyor. The landing ellipses under evaluation for this site selection are indicated, and cover an area of 170 x 19 km. The orientation of the landing ellipse depends on when the launch takes place within a given launch window – the sites have to be compliant with launch opportunities in both 2018 and 2020, as indicated.
.
The sites – Mawrth Vallis, Oxia Planum, Hypanis Vallis and Aram Dorsum – are all located relatively close to the equator.
“The present-day surface of Mars is a hostile place for living organisms, but primitive life may have gained a foothold when the climate was warmer and wetter, between 3.5 billion and 4 billion years ago,” says Jorge Vago, ESA’s ExoMars project scientist.
“Therefore, our landing site should be in an area with ancient rocks where liquid water was once abundant. Our initial assessment clearly identified four landing sites that are best suited to the mission’s scientific goals.”
The area around Mawrth Vallis and nearby Oxia Planum contains one of the largest exposures of rocks on Mars that are older than 3.8 billion years and clay-rich, indicating that water once played a role here. Mawrth Vallis lies on the boundary between the highlands and lowlands and is one of the oldest outflow channels on Mars.
The exposed rocks at both Mawrth Vallis and Oxia Planum have varied compositions, indicating a variety of deposition and wetting environments. In addition, the material of interest has been exposed by erosion only within the last few hundred million years, meaning the rocks are still well preserved against damage from the planet’s harsh radiation and oxidation environment.
By contrast, Hypanis Vallis lies on an exhumed fluvial fan, thought to be the remnant of an ancient river delta at the end of a major valley network. Distinct layers of fine-grained sedimentary rocks provide access to material deposited about 3.45 billion years ago.
.
Oxia Planum is one of four candidate landing sites under consideration for the ExoMars 2018 mission. It contains one of the largest exposures of ancient – approximately 3.8 billion years old – clay-rich rocks on the planet. The finely layered formations record a variety of deposition and wetting environments believed to be similar to that of Mawrth Vallis.
The image combines HRSC images from ESA Mars Express with MOLA topography data from NASA’s Mars Global Surveyor. The landing ellipses under evaluation for site selection are indicated, and cover an area of 104 x 19 km. The orientation of the landing ellipse depends on when the launch takes place within a given launch window – the sites have to be compliant with launch opportunities in both 2018 and 2020, as indicated.
.
Quelle: ESA
.
Update: 8.01.2014
.
ExoMars Trace Gas Orbiter
To explore requires a strong backbone – and that goes double for space exploration.
The 1.194 m-diameter 3.5-m high composite cylinder at the centre of this structure is the backbone of ESA’s ExoMars Trace Gas Orbiter core module, due for launch in 2016.
It has the task of transmitting the forces and stresses of launch throughout the rest of the spacecraft. It also houses the propellant and oxidiser tanks for the Orbiter thrusters – attachment points for the tanks are visible as lines of gold-coloured circles around the central tube.
The spacecraft is seen here during integration of its electrical subsystems in the cavernous Thales Alenia Space cleanroom in Cannes, France, last November.
The cylinder extends to the top of the core module, where the Schiaparelli entry, descent and landing demonstrator module will be held during the flight to Mars, before separating for landing.
The Orbiter itself will remain in Mars orbit to image surface features and study the composition of the atmosphere, including sniffing out trace gases such as methane, recently detected on the surface of Mars by NASA’s Curiosity rover.
---
Launch Period 7-27 January 2016
EDM – Orbiter separation 16 October 2016
Orbiter insertion into Mars orbit 19 October 2016
EDM enters Martian atmosphere and lands on the target site 19 October 2016
EDM science operations 19 October - 23 October 2016
(to be confirmed)
Orbiter changes inclination to science orbit (74°) 25 October 2016
Apocentre reduction manoeuvres (from the initial 4-sol orbit to a 1-sol orbit) 27 October 2016
Aerobraking phase (Orbiter lowers its altitude) 4 November 2016 - mid 2017
Start operating the Orbiter scientific instruments mid 2017
Superior conjunction (This is when the Sun is between Earth and Mars; Critical operations are paused.) 11 July - 11 August 2017
Start of the data relay operations to support communications for the rover mission 17 January 2019
End of mission December 2022
Quelle: ESA
-
Vince Cable (UK Secretary of State for Business) and David Parker (Chief Executive of the UK Space Agency) inspect a model rover at the Mars Yard in Stevenage, UK.
Quelle: ESA
-
Update: 19.09.2015
.
ExoMars 2016 targets Mars launch window
A problem recently discovered in two sensors in the propulsion system of the entry, descent and landing demonstrator module has prompted the recommendation to move the launch of the ExoMars 2016 mission, initially foreseen in January, to March, still within the launch window of early 2016.
ExoMars is a joint endeavour between ESA and Russia’s Roscosmos space agency. The recommendation was made in full coordination between the two agencies and will be finally endorsed by a joint steering board on 24 September.
The Schiaparelli module will prove key technologies to demonstrate Europe’s capability to make a controlled landing on Mars.
The 600 kg Schiaparelli will ride to Mars on the Trace Gas Orbiter, which will subsequently enter orbit around the Red Planet to begin its five-year mission of studying atmospheric gases potentially linked to present-day biological or geological activity.
Schiaparelli will separate from the orbiter three days before they reach Mars, entering the atmosphere at 21 000 km/h. Following aerobraking in the upper atmosphere and a parachute phase, a liquid-propellant thruster system will brake the module to less than 5 km/h at a height of about 2 m above the surface.
At that moment, the thrusters will be switched off and the lander will drop to the ground, where the impact will be cushioned by a crushable structure built into the module.
Less than eight minutes will elapse between the moment when Schiaparelli enters the atmosphere to its landing on Mars in a region known as Meridiani Planum.
However, a defect was recently found in two pressure transducers mounted in the propulsion system.
“A failure in the production process of the pressure transducers has been identified and this leads to concerns about leakage, which represents a major risk to a successful landing on Mars,” says Don McCoy, ESA ExoMars Project Manager.
“ESA has decided not to accept this risk and to remove both units from the landing module, the knock-on effect being that we can no longer maintain the January 2016 launch window and will instead move to the back-up launch window in March.
“We are pleased to have identified the issue in good time, and are focusing all our efforts to launch on 14 March.”
The sensors are not part of the control loop necessary for landing, but would rather have gathered ancillary data for monitoring the system. In order to meet the new launch window, the decision was made to remove the parts, rather than replace them.
The later window is open 14–25 March and, thanks to the relative orbital positions of Earth and Mars, the mission will still arrive at Mars in October, just as if launched in January.
A set of scientific sensors on Schiaparelli will collect data on the atmosphere during the entry and descent, and its instruments will perform local environment measurements at the landing site.
Quelle: ESA
-
Update: 26.09.2015
.
ExoMars-1 Mission Launch Officially Delayed Until March 2016
Roscosmos announced that the launch of a space orbiter to Mars under a joint Russia-EU research program had been postponed until March 2016.
MOSCOW — The launch of a space orbiter to Mars under a joint Russia-EU research program has been postponed until March 2016, the Russian Federal Space Agency, Roscosmos, said on Friday.
The launch of the ExoMars-1 mission was originally scheduled for January 7, 2016. Last week, Roscosmos and the European Space Agency (ESA) proposed postponing the launch of until March 2016, citing technical reasons that required additional inspections of the mission equipment.
"Today, on September 25, 2015, a meeting of the Governing Council of the ExoMars mission was held in the Dutch city of Noordwijk. The Council members, Roscosmos and ESA experts have decided to postpone the start of the mission from January to March next year due to the need to replace equipment on ESA — Schiaparelli demonstration descent," the Roscosmos' press service said.
According to the statement, the mission will be launched between March 14 and 26.
Overall, Roscosmos and ESA have agreed to launch two ExoMars missions, scheduled for 2016 and 2018 respectively.
In 2016, it is planned to launch the orbiter, the main goal of which is to study the atmosphere of Mars and to conduct data exchange with a rover. The rover itself is scheduled to be sent to the planet in 2018.
Quelle: Sputnik
.
Update: 22.10.2015
.
Landing site recommended for ExoMars 2018
Oxia Planum has been recommended as the primary candidate for the landing site of the ExoMars 2018 mission.
ExoMars 2018, comprising a rover and surface platform, is the second of two missions making up the ExoMars programme, a joint endeavour between ESA and Russia’s Roscosmos. Launch is planned for May 2018, with touchdown on the Red Planet in January 2019.
Meanwhile, the Trace Gas Orbiter and the Schiaparelli entry, descent and landing demonstrator module will be launched in March 2016, arriving at Mars around this time next year.
Schiaparelli will land in Meridiani Planum. The orbiter will study the atmosphere and act as a relay for the second mission.
The search for a suitable landing site for the second mission began in December 2013, when the science community was asked to propose candidates. In October 2014, the Landing Site Selection Working Group chose four sites. The last year has been spent evaluating these sites, taking into account the engineering constraints of descent and landing, and the best possible scientific return of the mission
The main goal for the rover is to search for evidence of martian life, past or present, in an area with ancient rocks where liquid water was once abundant. A drill is capable of extracting samples from up to 2 m below the surface. This is crucial, because the present surface of Mars is a hostile place for living organisms owing to the harsh solar and cosmic radiation. By searching underground, the rover has more chance of finding preserved evidence.
Scientists believe that primitive life could have gained a foothold when the surface environment was wetter, more than 3.6 billion years ago. Buried or recently exhumed layered sedimentary deposits thus offer the best window into this important period of Mars history.
.
Screenshot from the Where On Mars? visualisation tool depicting the location of four candidate landing sites (red markers) for ExoMars 2018. Visit the site to explore the landing regions in more detail.
.
All four sites under study – Aram Dorsum, Hypanis Vallis, Mawrth Vallis and Oxia Planum – show evidence of having been influenced by water in the past, and are likely representative of global processes operating in the Red Planet’s early history.
All locations offer the opportunity of landing at a scientifically interesting site or finding one within a 1 km drive from the touchdown point, with numerous targets accessible along a typical 2 km traverse planned for the mission of 218 martian days (each 24 hours 37 minutes).
Quelle: ESA
-
Update: 25.11.2015
.
ExoMars prepares to leave Europe for launch site
The two ExoMars spacecraft of the 2016 mission are being prepared for shipping to the Baikonur Cosmodrome in Kazakhstan ahead of their launch in March.
A joint endeavour with Russia’s Roscosmos space agency, ExoMars comprises two missions. The Trace Gas Orbiter (TGO) and Schiaparelli make up the 2016 mission, while the 2018 mission will combine a rover and a surface science platform. Both missions will be launched on Russian Proton rockets from Baikonur.
TGO and Schiaparelli are undergoing final preparations at Thales Alenia Space in Cannes, France, where they were today on display for media to view for the last time before they leave Europe.
They will be shipped separately in the middle of next month, arriving at the cosmodrome on 21 and 23 December, respectively.
.
Schiaparelli, also known as the ExoMars Entry, descent and landing Demonstrator Module is seen here being installed at the top of the Trace Gas Orbiter, at Thales Alenia Space, in Cannes, France, on 25 November 2015.
The first mission of the ExoMars programme, scheduled to arrive at Mars in 2016, consists of a Trace Gas Orbiter plus an Entry, Descent and Landing Demonstrator Module (EDM). The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA's contribution to subsequent missions to Mars.
The Orbiter itself will remain in Mars orbit to image surface features and study the composition of the atmosphere.
.
“It’s been a long road for ExoMars to reach this point, but we are now ready to launch in spring next year,” says Alvaro Gimenez, ESA Director of Science and Robotic Exploration.
“We are about to begin a new era of Mars exploration for Europe and our Russian partners.”
Sergey Saveliev, Deputy General Director of Roscosmos, says: “ExoMars is a unique example of the Russian–European cooperation in deep-space exploration.
“The mission of 2016 is just the first stage of our cooperation and, in the future, Roscosmos and ESA plan many joint projects to explore near and deep space.”
Donato Amoroso, deputy CEO of Thales Alenia Space, notes, “For Thales Alenia Space, our lead role in the extraordinary ExoMars programme, as producer of the orbiter and the entry, descent and landing module for in situ exploration of Mars, entails huge technological and human challenges.”
The first ExoMars is scheduled for launch on 14 March, at the start of a launch window that remains open until 25 March.
After a cruise of almost seven months to Mars, Schiaparelli will separate from TGO on 16 October for its entry, descent and landing in the Meridani Planum region on 19 October.
TGO, along with ESA’s Mars Express and NASA satellites already orbiting Mars, will relay data for the few days that Schiaparelli is expected to operate on its batteries.
Schiaparelli is primarily a demonstrator to prove a range of technologies enabling controlled landings on Mars in future, but it also carries a small science package to analyse its local environment once on the surface.
Meanwhile, after a series of aerobraking manoeuvres in 2017, TGO will enter orbit around Mars, from where it will take a detailed inventory of the gases in the planet’s atmosphere.
Of special interest are the abundance and distribution of methane: its presence implies an active, current source, and TGO will help to determine whether it stems from a geological or biological source.
“TGO will analyse ‘trace gases’ in the atmosphere,” says Håkan Svedhem, ESA’s project scientist. “Even though they make up less than one percent of the atmospheric inventory, they should provide key indicators to the nature of any active processes, helping us to determine just how ‘alive’ Mars may be today.
“TGO will also monitor seasonal changes in the composition and temperature of the atmosphere, and will map the subsurface to look for hidden water ice.”
Finally, TGO will also relay data from the rover and surface science platform of the 2018 mission.
.
Artist’s impression of the ExoMars 2016 Trace Gas Orbiter (TGO) and Schiaparelli – the entry, descent and landing demonstrator module, with TGO’s instrument packages labelled.
ACS: Atmospheric Chemistry Suite 
ACS is a suite of three infrared spectrometers to investigate the chemistry, aerosols and structure of the atmosphere. ACS will complement NOMAD by extending the coverage at infrared wavelengths.
CaSSIS: Colour and Stereo Surface Imaging System 
This high-resolution camera (5 m per pixel) will obtain colour and stereo images of the surface covering a wide swath. It will provide the geological and dynamic context for sources of trace gases detected by NOMAD and ACS.
FREND: Fine Resolution Epithermal Neutron Detector 
This neutron detector will map hydrogen on the surface down to a metre deep, revealing deposits of water-ice near the surface. FREND’s mapping of shallow subsurface water-ice will be up to 10 times better than existing measurements.
NOMAD: Nadir and Occultation for Mars Discovery 
NOMAD combines three spectrometers, two infrared and one ultraviolet, to perform high-sensitivity orbital identification of atmospheric components, including methane and many other species, via both solar occultation and direct reflected-light nadir observations.
Quelle: ESA
.
Update: 20.12.2015
.
ExoMars loaded onto Antonov for shipment to launch site in Baikonur
Quelle: ESA
-
Update: 21.12.2015
.
Gute Nachrichten! ESA´s Exomars ist gut in Baikonur angekommen:
Quelle: ESA
.
Update: 5.01.2016
.

THE EXOMARS 2016 SCHIAPARELLI MODULE IN BAIKONUR

Title The ExoMars 2016 Schiaparelli module in Baikonur
Released 05/01/2016 12:52 pm
Copyright TsENKI
Description
On 14 March, the launch window opens for ExoMars 2016, ESA’s next mission to Mars, composed of the Trace Gas Orbiter and Schiaparelli.
Last month, the two spacecraft left Thales Alenia Space in Cannes, France, where they had been for the final few months of assembly and testing, and headed towards the Baikonur cosmodrome in Kazakhstan.
With both now in Baikonur, preparations are under way for the launch on a Russian Proton rocket during a window that remains open until 25 March.
The 600 kg Schiaparelli – pictured here being unpacked in a cleanroom in the cosmodrome – will ride to Mars on the Trace Gas Orbiter. Three days before they reach the Red Planet, Schiaparelli will separate from the orbiter, which will then enter orbit for a five-year mission of studying atmospheric gases potentially linked to present-day biological or geological activity.
Schiaparelli will enter the atmosphere at 21 000 km/h and slow by aerobraking in the upper layers, then deploying a parachute, followed by liquid-propellant thrusters that will brake it to less than 5 km/h about 2 m above the surface.
At that moment, the thrusters will be switched off and it will drop to the ground, where the impact will be cushioned by its crushable structure.
Less than eight minutes will have elapsed between hitting the atmosphere and touching down in a region known as Meridiani Planum.
Scientific sensors on Schiaparelli will collect data on the atmosphere during entry and descent, and others will make local measurements  at the landing site for a short period determined by its battery capacity.
Schiaparelli will remain a target for laser ranging from orbiters using its reflector.
The module is named in honour of the Italian astronomer Giovanni Schiaparelli, who mapped the Red Planet’s surface features in the 19th century.
Quelle: ESA
-
Update: 21.02.2016
.
Giant nose in the sky’ ready for lift-off in mission to sniff out traces of life on Mars
The ExoMars probe will seek evidence of methane gas, which is seen as a crucial signpost of life
In a few days, space engineers will launch a probe that is designed to sniff out life on Mars.
The ExoMars robot spacecraft – which will blast off from the Baikonur cosmodrome in Kazakhstan on 14 March – will use a highly sensitive detector to determine whether methane, which is produced by living beings on Earth, exists in significant levels high in the atmosphere or near the surface of Mars.
The mission is designed to pinpoint hotspots that have high methane levels and that may provide the best prospects of finding life in the area. These would be targeted for future Mars missions.
“Essentially our spacecraft is a giant nose in the sky,” said Jorge Vago, the ExoMars project scientist. “And we are going to use it to sniff out the presence of methane on Mars and determine if it is being produced by biological processes.”
Most of the methane in Earth’s atmosphere is produced by micro-organisms, including many species that thrive in the guts of animals including cattle and termites. The gas’s presence in the atmosphere of Mars would provide strong support for the idea that life forms of some kind exist – or existed in the past.
To create a methane map of Mars, European Space Agency scientists have collaborated with Russian counterparts and designed ExoMars, a double mission whose first part will be launched in a few days and will put a probe, called the Trace Gas Orbiter, into orbit around the red planet. This will test for Martian methane. The probe will also test a package of landing equipment that could be used in the second part of the mission, a robot rover to be launched in 2018.
The Trace Gas Orbiter uses a suite of highly sensitive spectrometers, which can pinpoint the presence of the gas at extremely low levels. “Whiffs of methane have been detected by previous missions to Mars,” said Vago. “However, our detectors should be able to detect it at levels of only a few parts per trillion.”
The orbiter will use two approaches in its methane search. The first will involve viewing the planet at dawn and dusk, when the Sun will shine straight into the probe’s detectors. “This will give us detailed information about amounts of methane at different heights above the Martian surface,” said the Open University’s Manish Patel, who has designed some of the orbiter’s gas detectors. “The second part of our search will involve peering straight down on to the surface. In that way we will be able to map the planet’s methane hotspots.”
The orbiter’s spectrometers will be able to detect chemicals other than methane, however. They will also pinpoint other gases that will be vital in proving whether Martian methane has been produced by living entities or is merely the by-product of geological processes. “Some of the methane in our own atmosphere has come from geological processes, so we have to eliminate those as possible sources of the methane that we find on Mars,” said Patel. “That is a crucial part of our research.”
This point is emphasised by Vago. “If methane is found in the presence of other complex hydrocarbon gases, such as propane or ethane, that will be a strong indication that biological processes are involved. However, if we find methane in the presence of gases such as sulphur dioxide, a chemical strongly associated with volcanic activity on Earth, that will be a pretty sure sign that we are dealing with methane that has come from the ground and is a by-product of geological processes.”
The mission will also release a small landing craft called Schiaparelli, named after the Italian astronomer who, in the late 19th century, drew some of the first maps of Mars. The lander will beam back precise information about its behaviour as it descends through the atmosphere.
“Mars is one of the most difficult worlds in the solar system to land on and Europe has very little experience in settling probes safely on its surface,” said Stephen Lewis of the Open University, who has also been involved in the design of the spacecraft. “The information from Schiaparelli could be crucial in telling us what to expect when it comes to landing the second part of the mission – the robot rover – on the planet in two years.”
Quelle: theguardian

Tags: Launch 2016 Exomars ESA EXOMARS Orbiter 

4567 Views

Sonntag, 21. Februar 2016 - 15:35 Uhr

Raumfahrt - ISS-ALLtag: Scott Kelly trägt ein HoloLens Headset auf der Internationalen Raumstation

.

NASA’s Scott Kelly wearing a HoloLens headset on the International Space Station. (Via Microsoft)
Microsoft this morning posted an initial picture of NASA astronaut Scott Kelly wearing the company’s HoloLens holographic headset on the International Space Station — part of a collaboration between the Redmond company and the U.S. space administration.
The initiative, dubbed “Sidekick,” currently uses the HoloLens in two modes: “Remote Expert Mode,” which connects to operators on the ground who can see what the astronaut is viewing through the HoloLens and annotate the scene to provide real-time guidance for complicated tasks; and “Procedure Mode,” which augments the view through the HoloLens with animated holographic illustrations, on top of the real world.
The Sidekick project was explained in this recent talk by NASA’s Jeff Morris.Earlier this week, Microsoft’s Alex Kipman demonstrated HoloLens at the TED conference in Vancouver, B.C., showing an example of “holographic teleportation.” Microsoft will be delivering $3,000 HoloLens kits to developers sometime this quarter, but the company has yet to announce a price or launch date for the consumer versions.
Quelle: GeekWire

Tags: Raumfahrt 

1409 Views

Sonntag, 21. Februar 2016 - 14:20 Uhr

Raumfahrt - Mars-Curiosity-Chroniken - Curiosity-News Sol 1231-1259

.

Using an onboard focusing process, the Mars Hand Lens Imager (MAHLI) aboard NASA's Mars rover Curiosity created this product by merging two to eight images previously taken by the MAHLI, located on the turret at the end of the rover's robotic arm.
Curiosity performed the merge on January 23, 2016, Sol 1231 of the Mars Science Laboratory Mission, at 06:01:10 UTC. The focus motor count position was 14568. This number indicates the lens position of the first image that was merged.
The onboard focus merge is sometimes performed on images acquired the same sol as the merge, and sometimes uses pictures obtained on an earlier sol. Focus merging is a method to make a composite of images of the same target acquired at different focus positions to bring all (or, as many as possible) features into focus in a single image. Because the MAHLI focus merge is performed on Mars, it also serves as a means to reduce the number of images sent back to Earth. Each focus merge produces two images: a color, best-focus product and a black-and-white image that scientists can use to estimate focus position for each element of the best focus product. Thus, up to eight images can be merged, reducing the number of images returned to Earth to two. 
.
Using an onboard focusing process, the Mars Hand Lens Imager (MAHLI) aboard NASA's Mars rover Curiosity created this product by merging two to eight images previously taken by the MAHLI, located on the turret at the end of the rover's robotic arm.
Curiosity performed the merge on January 23, 2016, Sol 1231 of the Mars Science Laboratory Mission, at 06:06:43 UTC. The focus motor count position was 14568. This number indicates the lens position of the first image that was merged.
The onboard focus merge is sometimes performed on images acquired the same sol as the merge, and sometimes uses pictures obtained on an earlier sol. Focus merging is a method to make a composite of images of the same target acquired at different focus positions to bring all (or, as many as possible) features into focus in a single image. Because the MAHLI focus merge is performed on Mars, it also serves as a means to reduce the number of images sent back to Earth. Each focus merge produces two images: a color, best-focus product and a black-and-white image that scientists can use to estimate focus position for each element of the best focus product. Thus, up to eight images can be merged, reducing the number of images returned to Earth to two. 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1231 (2016-01-23 01:54:38 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1231 (2016-01-23 02:00:45 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1231 (2016-01-23 01:05:18 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1231 (2016-01-23 02:34:02 UTC). 
.
This image was taken by Front Hazcam: Left B (FHAZ_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1231 (2016-01-23 01:49:24 UTC). 
.
This image was taken by Front Hazcam: Left B (FHAZ_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1232 (2016-01-23 23:17:08 UTC). 
.
This image was taken by Navcam: Left B (NAV_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1233 (2016-01-25 03:01:01 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1234 (2016-01-26 01:06:40 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1234 (2016-01-26 01:13:38 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1234 (2016-01-26 03:07:02 UTC). 
.
This image was taken by ChemCam: Remote Micro-Imager (CHEMCAM_RMI) onboard NASA's Mars rover Curiosity on Sol 1234 (2016-01-26 01:57:52 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1235 (2016-01-26 20:12:57 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1235 (2016-01-26 20:12:57 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1235 (2016-01-26 20:14:12 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1235 (2016-01-27 04:01:31 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1235 (2016-01-26 20:13:33 UTC). 
.
This image was taken by Navcam: Left B (NAV_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1236 (2016-01-27 22:56:53 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1237 (2016-01-29 04:38:34 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1237 (2016-01-29 00:58:06 UTC). 
.
This image was taken by Front Hazcam: Left B (FHAZ_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1237 (2016-01-29 04:23:29 UTC). 
.
NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover's robotic arm, on February 2, 2016, Sol 1241 of the Mars Science Laboratory Mission, at 05:23:41 UTC.
.
NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover's robotic arm, on February 2, 2016, Sol 1241 of the Mars Science Laboratory Mission, at 08:49:52 UTC.
When this image was obtained, the focus motor count position was 12631. This number indicates the internal position of the MAHLI lens at the time the image was acquired. This count also tells whether the dust cover was open or closed. Values between 0 and 6000 mean the dust cover was closed; values between 12500 and 16000 occur when the cover is open. For close-up images, the motor count can in some cases be used to estimate the distance between the MAHLI lens and target. For example, in-focus images obtained with the dust cover open for which the lens was 2.5 cm from the target have a motor count near 15270. If the lens is 5 cm from the target, the motor count is near 14360; if 7 cm, 13980; 10 cm, 13635; 15 cm, 13325; 20 cm, 13155; 25 cm, 13050; 30 cm, 12970. These correspond to image scales, in micrometers per pixel, of about 16, 25, 32, 42, 60, 77, 95, and 113.
Most images acquired by MAHLI in daylight use the sun as an illumination source. However, in some cases, MAHLI's two groups of white light LEDs and one group of longwave ultraviolet (UV) LEDs might be used to illuminate targets. When Curiosity acquired this image, the group 1 white light LEDs were off, the group 2 white light LEDs were off, and the ultraviolet (UV) LEDS were off. 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1241 (2016-02-02 07:54:21 UTC). 
.
This image was taken by Navcam: Left B (NAV_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1241 (2016-02-02 09:14:32 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1243 (2016-02-04 08:08:46 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1243 (2016-02-04 08:11:57 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1243 (2016-02-04 08:06:03 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1244 (2016-02-05 06:23:28 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1244 (2016-02-05 08:17:50 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1244 (2016-02-05 10:17:11 UTC). 
.
This image was taken by Rear Hazcam: Right B (RHAZ_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1244 (2016-02-05 08:09:46 UTC). 
.
NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover's robotic arm, on February 6, 2016, Sol 1245 of the Mars Science Laboratory Mission, at 10:44:51 UTC.
When this image was obtained, the focus motor count position was 13009. This number indicates the internal position of the MAHLI lens at the time the image was acquired. This count also tells whether the dust cover was open or closed. Values between 0 and 6000 mean the dust cover was closed; values between 12500 and 16000 occur when the cover is open. For close-up images, the motor count can in some cases be used to estimate the distance between the MAHLI lens and target. For example, in-focus images obtained with the dust cover open for which the lens was 2.5 cm from the target have a motor count near 15270. If the lens is 5 cm from the target, the motor count is near 14360; if 7 cm, 13980; 10 cm, 13635; 15 cm, 13325; 20 cm, 13155; 25 cm, 13050; 30 cm, 12970. These correspond to image scales, in micrometers per pixel, of about 16, 25, 32, 42, 60, 77, 95, and 113.
Most images acquired by MAHLI in daylight use the sun as an illumination source. However, in some cases, MAHLI's two groups of white light LEDs and one group of longwave ultraviolet (UV) LEDs might be used to illuminate targets. When Curiosity acquired this image, the group 1 white light LEDs were off, the group 2 white light LEDs were off, and the ultraviolet (UV) LEDS were off. 
.
NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover's robotic arm, on February 6, 2016, Sol 1245 of the Mars Science Laboratory Mission, at 11:03:25 UTC.
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1245 (2016-02-06 11:15:11 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1246 (2016-02-07 04:20:30 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1246 (2016-02-07 13:12:39 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1246 (2016-02-07 13:14:15 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1246 (2016-02-07 13:17:21 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1247 (2016-02-08 10:18:26 UTC). 
.
This image was taken by Navcam: Left B (NAV_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1247 (2016-02-08 10:16:10 UTC). 
.
This image was taken by Navcam: Left B (NAV_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1247 (2016-02-08 10:25:31 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1248 (2016-02-09 09:53:59 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1248 (2016-02-09 11:41:54 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1249 (2016-02-10 12:10:57 UTC). 
.
This image was taken by Navcam: Left B (NAV_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1249 (2016-02-10 12:07:41 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1250 (2016-02-11 12:26:22 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1250 (2016-02-11 12:33:20 UTC). 
.
NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover's robotic arm, on February 12, 2016, Sol 1251 of the Mars Science Laboratory Mission, at 12:51:05 UTC.
When this image was obtained, the focus motor count position was 13017. This number indicates the internal position of the MAHLI lens at the time the image was acquired. This count also tells whether the dust cover was open or closed. Values between 0 and 6000 mean the dust cover was closed; values between 12500 and 16000 occur when the cover is open. For close-up images, the motor count can in some cases be used to estimate the distance between the MAHLI lens and target. For example, in-focus images obtained with the dust cover open for which the lens was 2.5 cm from the target have a motor count near 15270. If the lens is 5 cm from the target, the motor count is near 14360; if 7 cm, 13980; 10 cm, 13635; 15 cm, 13325; 20 cm, 13155; 25 cm, 13050; 30 cm, 12970. These correspond to image scales, in micrometers per pixel, of about 16, 25, 32, 42, 60, 77, 95, and 113.
Most images acquired by MAHLI in daylight use the sun as an illumination source. However, in some cases, MAHLI's two groups of white light LEDs and one group of longwave ultraviolet (UV) LEDs might be used to illuminate targets. When Curiosity acquired this image, the group 1 white light LEDs were off, the group 2 white light LEDs were off, and the ultraviolet (UV) LEDS were off. 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1251 (2016-02-12 12:43:50 UTC).
.
 
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1252 (2016-02-13 14:36:17 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1253 (2016-02-14 13:46:38 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1253 (2016-02-14 13:52:11 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1253 (2016-02-14 13:56:48 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1255 (2016-02-16 15:00:50 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1255 (2016-02-16 15:03:26 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1256 (2016-02-17 16:14:16 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1256 (2016-02-17 16:12:27 UTC). 
.
This image was taken by Navcam: Right B (NAV_RIGHT_B) onboard NASA's Mars rover Curiosity on Sol 1256 (2016-02-17 17:33:22 UTC). 
.
This image was taken by Navcam: Left B (NAV_LEFT_B) onboard NASA's Mars rover Curiosity on Sol 1256 (2016-02-17 17:33:22 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1257 (2016-02-18 18:02:21 UTC). 
.
This image was taken by Mastcam: Right (MAST_RIGHT) onboard NASA's Mars rover Curiosity on Sol 1257 (2016-02-18 18:05:52 UTC). 
.
This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 1257 (2016-02-18 18:07:10 UTC). 
.
NASA's Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover's robotic arm, on February 20, 2016, Sol 1259 of the Mars Science Laboratory Mission, at 21:04:23 UTC.
When this image was obtained, the focus motor count position was 13018. This number indicates the internal position of the MAHLI lens at the time the image was acquired. This count also tells whether the dust cover was open or closed. Values between 0 and 6000 mean the dust cover was closed; values between 12500 and 16000 occur when the cover is open. For close-up images, the motor count can in some cases be used to estimate the distance between the MAHLI lens and target. For example, in-focus images obtained with the dust cover open for which the lens was 2.5 cm from the target have a motor count near 15270. If the lens is 5 cm from the target, the motor count is near 14360; if 7 cm, 13980; 10 cm, 13635; 15 cm, 13325; 20 cm, 13155; 25 cm, 13050; 30 cm, 12970. These correspond to image scales, in micrometers per pixel, of about 16, 25, 32, 42, 60, 77, 95, and 113.
Most images acquired by MAHLI in daylight use the sun as an illumination source. However, in some cases, MAHLI's two groups of white light LEDs and one group of longwave ultraviolet (UV) LEDs might be used to illuminate targets. When Curiosity acquired this image, the group 1 white light LEDs were off, the group 2 white light LEDs were off, and the ultraviolet (UV) LEDS were off. 
Fotos: NASA

Tags: Raumfahrt 

1310 Views

Sonntag, 21. Februar 2016 - 09:54 Uhr

Mars-Chroniken - Spuren einer Mars Flut

.

Water has left its mark in a variety of ways in this martian scene captured by ESA’s Mars Express.
 -
The region lies on the western rim of an ancient large impact basin, as seen in the context map. The image shows the western part of the Arda Valles, a dendritic drainage system 260 km north of Holden Crater and close to Ladon Valles.
Vast volumes of water once flowed from the southern highlands, carving Ladon Valles and ponding in the large Ladon Basin seen in this image.
The plan views show the striking dendritic drainage pattern of the valleys (left). Many contributing streams merge into tributaries of the main channels before flowing down into the smooth-floored impact basin towards the right.
.
This context image shows part of the Arda Valles region on Mars, a dendritic drainage system located 260 km north of Holden Crater.
.
In the upper centre of the main image – also clearly identified in the topography and anaglyph images – a large mound is seen with an 8.5 km-wide impact crater at its foot. The mound is possibly the remnant of an older impact basin but may also have been influenced by sediments transported by the surrounding streams, building up a fan deposit.
In the centre right of the image, a large 25 km-wide impact crater has also been filled by thick muddy sediments that later collapsed into the chaotic terrain seen in the crater floor. The jumbled nodules in the crater rim probably indicate the former level of the infilling sediments.
To the top right of the scene, the surface has also broken up into a number of giant polygons, likely linked to the loss of underground ice and the slow evaporation of water that was once ubiquitous in this area.
The more concentric fracture-like features seen within the smooth floor of the large basin are likely also related to stresses in the surface resulting from the compaction of the vast amount of sediments that infill the basin.
Some of the fractures seem to join the central crater to the smoother basin floor, particularly evident in the perspective view. They could be a later manifestation of stresses due to subsidence or compaction of surface materials.
Finally, in the lower centre of the image, just above the crater at the bottom of the scene and towards the end of the dendritic channels, light-toned and layered deposits have been identified. These are clay minerals, known to be formed in the presence of water.
.
This perspective view in Arda Valles was generated from the main camera’s stereo channels on ESA’s Mars Express. The image focuses on a 25 km-wide impact crater filled with sediments, that have subsequently collapsed into chaotic terrain. The jumbled nodules in the crater rim probably indicate the former level of the infilling sediments.
A number of fracture-like features appear to extend out to the smoother basin floor to the right. They could be a later manifestation of stresses due to subsidence or compaction of surface materials.
The scene is part of region imaged by the High Resolution Stereo Camera on Mars Express on 20 July 2015 during orbit 14649. The main image is centred on 19°S / 327°E; the ground resolution is about 14 m per pixel.
.
This anaglyph image showing part of the Arda Valles region on Mars provides a 3D view of the landscape when viewed using stereoscopic glasses with red–green or red–blue filters.
The image is based on data acquired by the nadir channel and one stereo channel of the High Resolution Stereo Camera on Mars Express on 20 July 2015 during orbit 14649. The image is centred on 19°S / 327°E; the ground resolution is about 14 m per pixel.
Quelle: ESA

Tags: Mars-Chroniken 

1718 Views

Samstag, 20. Februar 2016 - 22:00 Uhr

Astronomie-History - Kosmos 1932: Nordlichtbeobachtung in Tromsö

.

Aus dem CENAP-Archiv:

.

.

.

KOSMOS

Quelle: CENAP-Archiv


Tags: Astronomie 

1258 Views

Samstag, 20. Februar 2016 - 21:55 Uhr

Luftfahrt - USAF der Zukunft 2021: Laser auf Kampfflugzeugen , Flugzeuge welche denken

.

“I think we need to do a leapfrog and push the technology even farther, and not sit on our laurels,” Zacharias said.
Lasers on Fighter Jets
In just five years, the Air Force will fire a high-powered laser from a fighter jet, the culmination of years of development of "Star Wars" technology.
The Air Force has not yet settled on a platform to host the laser, although the team is considering the legacy F-15, Bagnell said. AFRL will also look at the F-22 and F-16 as possible host platforms, and even the F-35 joint strike fighter, he said. The Air Force Research Laboratory’s “Shield” effort, sponsored by Air Combat Command, aims to demonstrate a high-energy laser on a tactical aircraft in 2021, according to Shield's program manager, Richard Bagnell.
The team has been working since February 2015 to take advantage of the latest developments in solid-state laser technology, Bagnell said. Engineers combine many smaller lasers, similar to ones found in a Blue Ray machine, into an effective high-power beam with over 10 kilowatts of power, he said.
“The idea here is to take power that’s in those beams, which travel at the speed of light, and be able to protect the aircraft in a threat environment,” Bagnell said, emphasizing that self-defense is the primary mission.
If contractors can package lasers into a small enough size to fit on a fighter, the Air Force could have a significant advantage in efficiency and speed of engagement, Bagnell said. The laser is generated by electrical power in the jet's engines, so operators can protect their asset without needing to carry additional kinetic weapons.
The Air Force will compete the program in several stages, Bagnell said. One contractor will develop the laser while another builds the overall laser weapons system, which involves packaging all the power, cooling and computers for system control and battle management into a flyable configuration. A third contractor will develop a beam-control system that allows the operator to direct the laser target, and a fourth will integrate the entire system.
The Air Force expects to award a beam control system in March, and the integration contract in September, Bagnell said. The contract for the laser itself has been delayed to 2017, in order to allow contractors sufficient time to develop the best possible system, he said.
But before Star Wars can become a reality, the Shield team has to overcome several significant obstacles. The Air Force has made strides toward developing a laser weapon system that can be mounted on a special forces AC-130 gunship by the end of the decade. But installing a laser on a smaller, faster fighter jet is much more difficult, Bagnell said.
First, it is much harder to accurately aim a laser at higher speeds due to increased vibration. The other challenge is miniaturizing the system enough to fit on a fighter jet, while maintaining sufficient energy output to generate an effective laser weapon.
To attack these obstacles, the Air Force is leveraging work by the other services on similar programs, Bagnell said. For example, the Army’s High Energy Laser Mobile Demonstrator (HEL MD) uses a 10 kilowatt laser installed on an Oshkosh tactical military vehicle; meanwhile, the Marine Corps is working to fit a laser on a Humvee.
Robots That Think
AFRL is also working on developing autonomous technology, in the form of not only robotic vehicles and aircraft, but also decision aids and data analyzers.
One of AFRL’s current projects is developing an intelligent system that can fuse intelligence, surveillance and reconnaissance (ISR) information coming from deployed assets and rapidly sort the relevant data, according to AFRL’s Kristen Kearns. Currently, airmen must watch hours of full motion video, painstakingly pick out events that might be of interest, and report red flags up the chain of command to inform leadership decisions.
An autonomous system could comb through that data rapidly, freeing up airmen for other missions, Kearns stressed.
“Instead of the airmen sitting there looking at hours and hours of data, a machine can comb through that and help at least filter out what’s the most important,” said Kearns. “It lessens workload but it also has our airmen doing the work that we want them to do as opposed to essentially watching the grass grow.”
Kearns emphasized that AFRL’s work on autonomy is not about taking the airman out of the decision loop; rather it is about providing the airman an intelligent teammate to help complete the mission more effectively. The team is also working on developing an unmanned vehicle that can team with the Air Force’s manned fighter aircraft, Kearns said.
AFRL, working with the Air Force’s test pilot school, has already demonstrated that this concept of teaming a manned with an unmanned aircraft is possible in a controlled environment. The team recently flew a manned F-16 in formation with a “surrogate” F-16 UAV — in other words, the surrogate has a pilot sitting in the cockpit to take over if something goes wrong, but the algorithms fly the plane. During this exercise, the manned and surrogate F-16s flew in formation together until the pilot in the manned plane directed the surrogate to execute a separate mission. The surrogate F-16 completed the mission and then rejoined the formation, Kearns said.
But Kearns wants to go beyond an automated fighter jet. AFRL is planning an exercise in 2022 that will demonstrate the technology is not just automated, but autonomous — that it can navigate, adapt to unexpected weather and easily change its flight path without direction from an operator.
"What we'd like to show is that the system can fly around, navigate, it can adapt to things in the environment. If weather pops up it knows how to adapt its flight path for weather," Kearns said. "We might [see these] as trivial kind of responses, but they are still critical for a platform to be able to do on its own and show that it can do them well."
Quelle: AirForceTimes

Tags: Luftfahrt Flugzeuge welche denken 

1176 Views


Weitere 10 Nachrichten nachladen...