Blogarchiv

Sonntag, 29. September 2013 - 22:00 Uhr

Luftfahrt - NASA´s Luftfahrt-Forschung

.

Glow with the Flow

Researchers at NASA's Langley Research Center in Hampton, Va., use all sorts of tools and techniques to learn more during the development of aircraft and spacecraft designs.

In this photo, engineers led by researcher Greg Gatlin have sprayed fluorescent oil on a 5.8 percent scale model of a futuristic hybrid wing body during tests in the14 by-22-Foot Subsonic Wind Tunnel.

The oil helps researchers "see" the flow patterns when air passes over and around the model. Those patterns are important in determining crucial aircraft characteristics such as lift and drag.

Quelle: NASA


5454 Views

Samstag, 28. September 2013 - 16:39 Uhr

Raumfahrt - Japan will Solarenergie Strahl vom Orbit aus nach unten senden

.

Concept artwork produced in the USA shows how an array of mirrors could collect solar energy and transmit it to the ground. Credit: ©Mafic Studios, Inc

.

The Japanese space agency JAXA is developing a revolutionary concept to put “power stations” in orbit to capture sunlight and beam it to Earth.

The country has been looking for new power sources following the devastating earthquake and tsunami in March, 2011, that destroyed much of the north-east of the country and caused a meltdown at the Fukushima Daiichi Nuclear Power Plant.

Many of the country’s nuclear reactors were closed due to stricter safety regulations after the emergency. Now JAXA is aiming to set up a Space Solar Power System (SSPS) by 2030. An array of mirrors would sit in geostationary orbit to collect solar energy and then transmits it to a power plant on the ground via microwaves or laser beams. There it could be used to generate electricity and hydrogen.

Proponents of the technology say that it would provide continuous energy without any worry that resources would be depleted. It would be unaffected by the time of day or weather and would provide environmentally friendly, clean energy.

Interestingly, the idea is not a new one. An American, Dr Peter Glaser, designed a similar concept in 1968 to deploy large solar panels in space to generate power and convert it into microwaves to transmit to the ground. Following studies by NASA and the US Department of Energy, the project was deemed too costly and it was never developed.

Similar studies have been carried out in Europe. The idea is also reminiscent of a Russian plan in the 1990s to use mirrors to beam sunlight to the ground at night. This had astronomers and environmentalists up in arms because of the light pollution it would have caused. The Japanese concept is different because there would be no stray light emitted from the beam.

.

How the solar beam from space will be received by a power planet on Earth. Credit: JAXA

.

Yasuyuki Fukumuro is leading research and planning for SSPS. He says: “We have not yet decided whether to use microwaves or laser beams with SSPS, or whether we will somehow combine them. We are currently conducting ground-based experiments to find the most efficient way to transmit energy.

“Regardless of which transmission technology we use, when we collect sunlight from outside the Earth’s atmosphere, we can get a continuous supply of it, with almost no influence from the weather, the seasons, or time of day, allowing very efficient collection of solar energy.

“And since the energy source is the Sun, it’s an endlessly renewable resource - it won’t run out as long as the Sun is there. Also, because the power is generated in space and carbon dioxide is emitted only at the receiving site, emissions within the Earth’s atmosphere can be greatly reduced, which makes this technology very friendly to the environment.”

Fukumuro admits the system has its challenges. He says: “When transmitting power by microwaves, a significant technological challenge is how to control the direction, and transmit it with pinpoint accuracy from a geostationary orbit to a receiving site on the ground. Transmitting microwaves from an altitude of 36,000 km to a flat surface 3 km in diameter will be like threading a needle.”

Fukumuro suggests the technology will also be useful in disaster situations. In the event of a blackout, a collecting dish could be unfolded and deployed to receive microwaves from space for conversion into electrical energy.

JAXA is working with a collective of machining and engineering companies called Kyoto Shisaku Net to develop the array of reflectors that would be lifted into orbit by reusable shuttle-like spacecraft and then assemble themselves.

JAXA Engineer and Senior Researcher Katsuto Kisara says: “The biggest problem we’ve encountered with the project is developing solar mirrors that are incredibly lightweight. I think that there is certainly a way to do it, but it has presented quite the challenge.”

Quelle: SEN


3853 Views

Samstag, 28. September 2013 - 12:41 Uhr

Raumfahrt - Chinesische Super-Heavy Launcher Entwürfe übertreffen Saturn V

.

YF-77 Engine BeijingAerospacePropulsionInstitute

.

Chinese engineers are proposing a Moon rocket more powerful than the Saturn V of the Apollo missions and matching the payload of NASA's planned Space Launch System (SLS) Block 2, the unfunded launcher that would put the U.S. back into super-heavy space lift.

Drawing up preliminary designs for the giant Long March 9 launcher, Chinese launch vehicle builder CALT has studied configurations remarkably similar to those that NASA considered in looking for the same capability: to lift 130 metric tons (287,000 lb.) to low Earth orbit (LEO). One of the two preferred Chinese proposals has a similar configuration to the design finally adopted for SLS Block 2, though the takeoff mass for both CALT concepts, 4,100-4,150 tons, is greater. On that measure, at least, China wants to build the largest space launcher in history.

Preliminary work is underway for the intended engines. At the Xian Space Propulsion Institute, engineers are certainly planning and probably doing risk-reduction work for a kerosene-fueled engine, apparently called YF-660, that would be comparable to the 690 tons thrust of the Saturn V's F-1. The Beijing Aerospace Propulsion Institute, meanwhile, is working on critical technologies for a 200-ton-thrust liquid-hydrogen engine that would be used for the first stage of one launcher design and for the second stage of both. That engine is apparently called the YF-220.

Comparison with current launchers and engines highlights the scale of China's ambitions: Whereas U.S. SLS engineers are aiming at a 10% increase on the throw weight of the Saturn V and would use mainly familiar propulsion technology, CALT's super-heavy launcher would have 10 times the throw weight of anything that China now has in service, and would be four times bigger than even the largest rocket it is developing—the Long March 5. The YF-660 engine would be five times as powerful as the biggest engine China has so far built, one that has not yet flown.

The Chinese industry is seeking permission to begin developing a Moon rocket. Studies encompass payloads as low as 70 tons to LEO, says an industry official, suggesting that China may follow the SLS concept by first building a smaller launcher adaptable to enlargement.

Possible Long March 9 configurations were shown two years ago. At the International Astronautical Congress held here Sept. 23-27, CALT published main specifications (see table). One of the two concepts, Scheme A, would have four YF-660s mounted in the core first stage and one in each of four side-mounted boosters. In Scheme B, most of the takeoff thrust would come from four solid-propellant boosters, each generating 1,000 tons of thrust, while four YF-220s would be mounted in the first stage. That adds up to 4,800 tons, but the specified total is 5,000 tons, suggesting that the solid-propellant booster engine, the YF-220 or both will generate a little more than the thrust attributed to each individually. The designation of the YF-220 may hint at its real thrust target.

“I don't find much to criticize in their approach, and a lot to like,” says an experienced U.S. space engineer.

The YF-220 exists as a concept or preliminary design, says Zhang Nan, president of the Beijing Aerospace Propulsion Institute, without using the name of the engine. His institute is channeling its experience in developing the YF-77 for the Long March 5 as it works on the new engine. So far, developers are tackling critical technologies and have not built parts for a flyable engine. A technology they will not attempt is staged combustion, a means of driving the pumps that, while maximizing engine efficiency, is hard to develop, especially for engines running on liquid oxygen and liquid hydrogen. In fact, it is too hard, says Zhang. The corresponding engine of the SLS, the Rocketdyne RS-25 from the Space Shuttle, does combine staged combustion with hydrogen fuel. The future Chinese engine's specific impulse (ISP)—thrust divided by fuel flow—may be as high as 430 sec., compared with 428 sec. for the YF-77, notes Zhang.

China's biggest kerosene-fuel engine, the YF-100, uses staged combustion, but applying the technology will be one of the many challenges that engineers will face in building bigger powerplants. Project managers at Xian appear to have minimized problems by adopting a plan they set out in 2011 and 2012 to first build an engine of more moderate size—300-400 tons thrust, presumably—and then doubling it for Long March 9 by feeding two of its combustion chambers with a single, more powerful propellant pump. A drawing of Long March 9 Scheme A has subtly changed since 2012 to show the extra nozzles of two-chamber engines.

Given the stated fuel loads and likely characteristics of the engines, the boosters of Scheme A are likely to burn for 160 sec. and the core for 220 sec., calculates a foreign rocket engineer. The second stage would run for 500 sec., presumably in several burns. If the Xian Institute can reproduce the efficiency of the YF-100 in the YF-660, then ISP at takeoff will be 305 sec. For Scheme B, the solid-propellant boosters may run for about 120 sec., the core first stage for 500 sec. and the second stage for 400 sec.

At 3.2%, the payload fractions of Schemes A and B are much lower than those of the Saturn V (3.9%) and SLS Block 2 (4.4%). This does not necessarily mean the Chinese design is inefficient, say engineers experienced in comparing launcher configurations; it may just reflect design choices that drive up takeoff weight but are nonetheless cost-effective. Solid-propellant boosters and their mounting structure probably account for much of Scheme B's excess of weight over Scheme A's.

The payload to LEO of the two designs suggests industry leaders here are eyeing lunar expeditions perhaps not much more ambitious than Apollo, although the mass they can deliver to the Moon's surface will also depend on how the mission is executed. Sending a crew aloft on a separate launch to join the rest of their spacecraft, carried by a Long March 9, could greatly expand the mission. The Saturn V, which lofted all Apollo modules in a single shot, had a payload to LEO of 118 tons.

At the International Astronautics Congress, the Chinese industry showed a concept for sending people to the Moon with three launches via smaller rockets. A cargo launcher, perhaps a little sibling of Long March 9, would fire a lunar-landing craft into orbit around the Moon. Then a crewed capsule would follow on an even smaller launcher, presumably a Long March 2F or Long March 7, China's current and future human-rated rockets, respectively. A propulsion unit sent on a second cargo launcher would join the capsule and propel it to lunar orbit, where it would meet the lander.

Smaller launchers are cheaper to develop, but bigger ones offer lower operating costs for their payload sizes. The economics of China's choice, then, must depend on whether it wants to sponsor heavy space missions for the long run, sending a super-heavy launcher up perhaps once a year, and not only to the Moon. If the aim is to perform a few manned lunar missions and then stop, it would surely be cheaper to execute each with multiple launches of moderately sized rockets. If more heavy-load tasks beckon, then a huge rocket is the answer, say Western engineers.

The Chinese space managers are on that wavelength. In the paper presented to the congress that detailed the Long March 9, CALT authors mentioned Moon shots, with a trans-lunar injection load of 50 tons, as only one purpose of the proposed launcher. Deep-space exploration (20 tons escaping Earth gravity), large-scale Earth-orbit missions (50 tons to geostationary transfer orbit) and new concept missions (50 tons escaping Earth gravity) were also touched upon, although the latter would require another rocket design.

Long March 9 Design Alternatives
 
  Scheme AScheme B
Boosters    
Engines 4 x YF-660 4 x unknown name
Thrust 4 x 650 metric tons 4 x 1,000 metric tons
Propellant Liquid oxygen, kerosene Solid
Tankage 4 x 320 metric tons 4 x 575 metric tons
Core Stage One    
Engines 4 x YF-660 4 x YF-220
Thrust 4 x 650 metric tons 4 x 200 metric tons
Propellant Liquid oxygen, kerosene Liquid oxygen, liquid hydrogen
Tankage 1,756 metric tons 1,000 metric tons
Core Stage Two    
Engines 2 x YF-220 1 x YF-220
Thrust 2 x 200 metric tons 1 x 200 metric tons
Propellant Liquid oxygen, liquid hydrogen Liquid oxygen, liquid hydrogen
Tankage 500 metric tons 200 metric tons
Takeoff thrust 5,200 metric tons 5,000 metric tons
Takeoff weight 4,100 metric tons 4,150 metric tons
Dry weight* 434 metric tons 517 metric tons
  10.6% of takeoff weight 12.5% of takeoff weight
Total propellant* 3,666 metric tons 3,633 metric tons
  86.2% of takeoff weight 84.3% of takeoff weight
Payload, LEO 130 metric tons 133 metric tons
  3.2% of takeoff weight 3.2% of takeoff weight
Payload, LTO 50 metric tons 50 metric tons
Length 98 meters (322 ft.) 101 meters (331 ft.)
     
 
Quelle: Aviation Week             

3485 Views

Freitag, 27. September 2013 - 22:38 Uhr

Raumfahrt - NASA Astronauten lernen das neue Orion-Raumschiff kennen

.

Astronauts Practice Launching in NASA’s New Orion Spacecraft

.

NASA astronauts recently experienced what it will be like to launch into space aboard the new Orion spacecraft during the first ascent simulations since the space shuttles and their simulators were retired.

Ascent simulations are precise rehearsals of the steps a spacecraft’s crew will be responsible for – including things that could go wrong – during their climb into space. They can be generic and apply to any future deep space mission, or very specific to a launch that’s been planned down to the second. For now, Orion’s simulations fall into the first category, but practicing now helps ensure the team will have the systems perfected for the astronauts in any future mission scenario.

"Simulations like these provide valuable experience by giving astronauts and our operations team an early look at what going to deep space in Orion will be like," said Lee Morin, an astronaut and supervisor of Johnson’s rapid prototyping laboratory, who has been working on the Orion displays. "Rehearsing launch and ascent--two of the most challenging parts of Orion's mission -- also gives us an opportunity to work toward optimizing how the crew interacts with the spacecraft."

Designing a spacecraft’s cockpit for ease of use and efficiency is no easy task. Each space shuttle had 10 display screens, more than 1,200 switches, dials and gauges, plus hundreds of pounds of procedures printed on paper. Orion, which is designed for deep-space exploration and autonomous or piloted rendezvous and docking, will use new technology to distill all of that down to just three computer screens, each the size of a sheet of paper.

“It sounds promising and saves a lot of weight, but designing it is challenging,” said Jeff Fox, the Orion crew systems integration lead. “We don’t want the crew to have to search through a lot of dropdown menus when they need to quickly access key systems and information.”

It will take about eight minutes for Orion to get from the launch pad at Kennedy Space Center to the altitude where the rocket’s main engines will cut off, the milestone that marks the spacecraft’s arrival in space. In that time, if everything goes as planned, the commander and pilot will have few actions to perform; if anything goes wrong, that quickly changes, and the crew must be able to quickly access all the relevant procedures and displays they need.

The Orion team has been working to develop ideas on how to make that possible, and has developed a working prototype that’s been installed in a life-sized Orion mockup at Johnson Space Center. But no one is better able to judge how well it works than an astronaut.

“No one knows how to fly Orion yet – the hardware doesn’t exist yet in some cases,” Morin said. “But these crews have a lot of flight experience and a lot of test flight experience. They can help us design the displays and build a better product.”

Over the course of two weeks, 10 crews of two astronauts apiece performed two normal launch simulations and two launch abort simulations inside the Orion mockup. As they made their way through the various actions they were called on to perform, engineers took careful notes of every comment they made and question they asked. That data will be evaluated as engineers continue to fine-tune the design and build requirements for the displays and controls.

In a few months, the same crews will come back and try a new and improved version, and the process will repeat itself as Orion’s mission requirements evolve and the vehicle design is refined. In the end, the engineers and astronauts will rest assured that the system will work exactly as it should. Orion’s data and software will be made available to NASA’s commercial partners for use in vehicles being built to ferry astronauts to and from the International Space Station. Although the final product will be different because the vehicles travel to unique destinations, NASA’s partners can choose to use it and build off of Orion’s foundation.

“It’s very rewarding work, knowing the displays we are creating and testing now will be what future astronauts will be looking at as they rendezvous with an asteroid, orbit the moon, and even travel to Mars,” Morin said. “Getting this right is key to making Orion and other future vehicles safer and easier to use.”

Orion’s first crewed launch, Exploration Mission-1, is scheduled for 2021, when NASA plans to send two astronauts to an asteroid in lunar orbit, with the help of NASA’s new heavy-lift rocket, the Space Launch System. It will be the farthest humans have traveled in more than 40 years, and Orion will ultimately allow us to go even farther, including to destinations such as Mars.

Quelle: NASA


Tags: new Orion spacecraft 

3560 Views

Freitag, 27. September 2013 - 17:00 Uhr

Astronomie - Beobachtungen zeigen entscheidendes Zusammenspiel von interstellaren Staub und Wasserstoff

.

Intense molecular hydrogen formation shown in near infrared image of the reflection nebula IC 63 in the constellation Cassiopeia. The white bars represent polarization seen toward stars in the background of the nebula. The largest polarization shows the most intense emission, demonstrating that hydrogen formation influences alignment of the dust grain with a magnetic field. 
.
For astrophysicists, the interplay of hydrogen — the most common molecule in the universe — and the vast clouds of dust that fill the voids of interstellar space has been an intractable puzzle of stellar evolution.
The dust, astronomers believe, is a key phase in the life cycle of stars, which are formed in dusty nurseries throughout the cosmos. But how the dust interacts with hydrogen and is oriented by the magnetic fields in deep space has proved a six-decade-long theoretical challenge.
Now, an international team of astronomers reports key observations that confirm a theory devised by University of Wisconsin-Madison astrophysicist Alexandre Lazarian and Wisconsin graduate student Thiem Hoang. The theory describes how dust grains in interstellar space, like soldiers in lock-drill formation, spin and organize themselves in the presence of magnetic fields to precisely align in key astrophysical environments.
The effort promises to untangle a theoretical logjam about key elements of the interstellar medium and underpin novel observational tactics to probe magnetic fields in space.
The new observations, conducted by a team led by B-G Andersson of the Universities Space Research Association (USRA), and their theoretical implications are to be reported in the Oct. 1, 2013 edition of the Astrophysical Journal. The observations were conducted using a variety of techniques — optical and near infrared polarimetry, high-accuracy optical spectroscopy and photometry, and sensitive imaging in the near infrared — at observatories in Spain, Hawaii, Arizona and New Mexico.
"We need to understand grain alignment if we want to make use of polarimetry as a means of investigating interstellar magnetic fields," says Lazarian, who was encouraged to attack the problem by the renowned astrophysicist Lyman Spitzer. "Spitzer himself worked on the problem extensively."
Scientists have long known that starlight becomes polarized as it shines through clouds of neatly aligned, rapidly spinning grains of interstellar dust. And the parsing of polarized light is a key observational technique. But how the grains of dust interact with hydrogen, become aligned so that starlight shining through becomes polarized, and are set spinning has been a mystery.
"While interstellar polarization has been known since 1949, the physical mechanisms behind grain alignment have been poorly understood until recently," explains Andersson. "These observations form part of a coordinated effort to — after more than 60 years — place interstellar grain alignment on a solid theoretical and observational footing."
The observations made by Andersson and his colleagues support an analytical theory posed by Lazarian and Hoang known as Radiative Alignment Torque, which describes how irregular grains can be aligned by their interaction with magnetic fields and stellar radiation. Under the theory, grains are spun, propeller-like, by photons. Their alignment is modified by magnetic fields, which orients them with respect to the field, telling an observer its direction. Impurities and defects on the dust grains produce catalytic sites for the formation of hydrogen molecules, which are subsequently ejected, creating miniature "rocket engines," also called "Purcell thrusters" after Nobel laureate Edwin Purcell, who studied grain alignment.
The theory devised by Lazarian and Hoang predicts how the molecular hydrogen thrust changes grain alignment, and was put to the test by Andersson's team of observers.
Confirming the theory, Lazarian notes, not only helps explain how interstellar dust grains align, but promises a new ability for astronomers to use polarized visible and near infrared light to reliably probe the strength and structure of magnetic fields in interstellar space, a notoriously difficult phenomenon to measure quantitatively.
Interstellar magnetic fields are ubiquitous in spiral galaxies like our Milky Way and are believed to be essential regulators of star formation and the evolution of proto-planetary disks. They also control the regulation and propagation of cosmic rays.
The murky piece of the astrophysical puzzle, says Lazarian, was how the irregular grains of interstellar dust were set in spinning motion. The observations conducted by Andersson demonstrate that intense molecular hydrogen formation on the surface of the interstellar dust grains is an important contributor to the dust grains spinning.
Hydrogen does not exist in the element's gas phase in space since the two atoms of the molecule cannot rid themselves of the formation reaction energy without a third body. The two hydrogen atoms therefore use the surfaces of dust grains as a substrate, and the force of the reaction energy is enough to set the dust grains in motion.
The new work, which was supported by the National Science Foundation, is especially timely, Lazarian says, as two new observatories — the ground-based ALMA, the Atacama Large Millimeter Array, and the space-based Planck Telescope — are poised to build on the new results.
Quelle: University of Wisconsin

3457 Views

Freitag, 27. September 2013 - 15:15 Uhr

UFO-Forschung - Mein erstes UFO... oder geheimer Raketentest?

.

von Jan Hattenbach,

 

...und es hat mich nicht mitgenommen. Schade. Egal, spannend ist allemal, was wir bei unserem kürzlichen La-Palma-Aufenthalt aufgenommen haben. Eigentlich wollten wir das größte optische Teleskop der Welt, das GranTeCan, bei der Arbeit filmen. Das ist auch gelungen, doch beim Zusammensetzen des Zeitraffers fiel mir ein ziemlich merkwürdiges Objekt auf. Hier die entscheidende Stelle:

.

21.09.2013

.

Frams aus Zeitraffer-Aufnahme:Jan Hattenbach

.

UPDATE, 21-09.: Marco Langbroek hat in einer sehr ausführlichen Analyse dargelegt, dass eigentlich nur ein geheimer Raketenstart einer ballistischen Rakete von einem UBoot im Atlantik als Erklärung in Frage kommt. Die Helligkeitsschwankungen des Objekts deutet er als Zündungen mehrere Raketenstufen, höchstwahrscheinlich einer militärischen Trident Rakete, die von US-amerikanischen und britischen UBooten eingesetzt werden.

Hier noch ein Stack des unten gezeigten Videos, der die Flugbahn des Objekts besser zeigt:

.

Aufnahmedatum war der 10. September 2013, dargestellt sind 42 Einzelbilder mit je 5 Sekunden Belichtungszeit und 2 Sekunden Pause dazwischen, die zwischen 21:16 und 21:20 Uhr Ortszeit (23:16-23:20 MESZ) aufgenommen worden sind. Die Position der Kamera war direkt oberhalb des GranTeCan-Teleskops, in 2300m Höhe mit Blickrichtung West (Westen liegt genau in Richtung Kuppel), die geografische Koordinaten sind laut Google Earth 28°45'23,04"N und 17°53'20,06"W).

Das Objekt am linken Bildrand sieht verdächtig nach einer startenden Rakete aus, der "Nebel" könnten Abgase oder auch abgelassener Treibstoff sein - so etwas kann man hin und wieder am Himmel sehen.

.

"Ufo-Alarm"? - Ein Raketenexperiment macht Wirbel

von Jan Hattenbach, 19. Oktober 2009

 

Für Aufregung sorgte gestern abend ein ungewöhnliches Himmelsereignis: Gegen 21:20 MESZ beobachteten zahllose Menschen mehrere seltsam leuchtende Wolken, die sich innerhalb weniger Minuten am Himmel ausbreiteten. Viele mutmaßten, es könne sich um helle Meteore, einen Kometen, Weltraumschrott oder gar um Ufos handeln - doch die richtige Erklärung ist eine andere!

Die ersten Beobachtungmeldungen gingen bereits wenige Minuten später in diversen Internetforen ein. Recht ähnlich lauten die Beschreibungen der Augenzeugen: Gegen 21:20 Uhr MESZ erschien demnach zunächst ein leuchtender Lichtpunkt  am westlichen Himmel, der sich mit der typischen Geschwindigkeit eines erdnahen Satelliten Richtung Norden bewegte. Kurz dahinter zeigte sich eine "neblige Struktur", die manche Beobachter als ein "verglühendes Teil" interpretierten. Hinter diesem wiederum tauchte eine weitere neblige, als trichterförmig oder auch "kometenartig" beschriebene Struktur, die der ersten in einem Abstand von mindestens 30° folgte.

Besonders beindruckend aber war wohl eine gewaltige, haloartige Wolkenerscheinung, die die kometenförmige Struktur umgab und den Berichten zufolge fast die Hälfte des Himmels bedeckte. Die Erscheinung dauerte nicht sehr lange - nach etwa 15 Minuten verblassten die Wolken und lösten sich auf, während sie zum Nordhorizont wanderten. 

Berichte zu diesem ungewöhnlichen Phänomen gibt es u. a. im Astrotreff-Forum, bei astronomie.de und natürlich im Forum des Arbeitskreises Meteore e. V. Hier, im meteoros-Forum, tauchten schon bald die ersten Bilder der Erscheinung auf. Besonders die hier gezeigte Bildserie illustriert das Phänomen sehr deutlich. (Edit: Diese hier auch - Gif-Animation ganz unten auf der Seite!)

Die Augenzeugenberichte und Fotos machten schnell deutlich, dass es sich weder um einen hellen Meteor (wie erst kürzlich mehrfach beobachtet) noch um einen Kometen handeln kann. Meteore sind verglühende Staubkörnchen in der Erdatmosphäre, die als Sternschnuppe kurzzeitig aufleuchten. Selbst wenn größere Brocken auf die Lufthülle der Erde treffen, so ist die Leuchterscheinung zwar viel beeindruckender (man spricht von Boliden oder Feuerkugeln), die Erscheinung ist aber in wenigen Sekunden vorüber. 

Ein Komet ist ein meist kilometergroßer Eis-und Felsbrocken, der das Sonnensystem durchquert und in der Nähe der Sonne "aufschmilzt" und als Schweifstern sichtbar wird. Obwohl Kometen relativ unvermutet auftreten können, tauchen sie dennoch nicht aus dem Nichts auf. Sie werden oft schon Monate oder Jahre vor ihrem Erscheinen am irdischen Nachthimmel entdeckt. Auch befinden sie sich weit von der Erde weg - viele Millionen Kilometer - so dass ihre Bewegung sehr langsam im Vergleich zu einem Meteor (der sich ja nur wenige Kilometer über und befindet) erscheint. Kometen sind meist tage- oder wochenlang zu sehen, also wesentlich länger als die Erscheinung von gestern abend.

Die Erklärung ist profaner: Am 18. Oktober um 18:12 MESZ hob von einer Militärbasis in Kalifornien eine Atlas-V-Rakete mit einem militärischen Wettersatelliten (DMSP F18) ab. Es handelte sich übrigens um den 600. Start einer Atlas-Rakete, einem "Arbeitspferd" der US-amerikanischen Raumfahrt. Nachdem die Rakete ihre Nutzlast in einen polaren Orbit verbracht hatte, blieb noch genügend Treibstoff an Bord, um einige weitere Test mit der verbleibenden Centaur-Raketenstufe durchzuführen. 

Der Höhepunkt dieser Experimente war ein letztes Zünden der Triebwerke, ziemlich genau drei Stunden nach dem Start - also zeitgleich mit dem Auftreten des Himmelsphänomens. Des Rätsels Lösung wurde ebenfalls schon kurz nach dem Eintreffen der ersten Meldungen über das Internet verbreitet: Es handelte sich bei den beobachteten Wolken um Raketenabgase von verbranntem Hydrazin, die freigesetzt wurden, als die Triebwerke noch einmal für 3 Minuten und 40 Sekunden eingeschaltet wurden und die Rakete von der Erde fort beschleunigten.

Edit: Auf dieser Karte der Raketenflugbahn (Quelle: United Launch Alliance) erkennt man deutlich, dass das Zünden des Triebwerks ("Disposal Burn", grüne Markierung) über Nordafrika startete und über Frankreich endete. Somit befand sich Westeuropa tatsächlich in einer Logenposition für die Beobachtung!  


 

Ein solches Manöver ist in der Tat ungewöhnlich. Häufig werden die ausgebrannten Raketenstufen zum kontrollierten Absturz in den Pazifik gelenkt. Dieses Mal wollten die Raumfahrtingenieure aber das Experiment am Himmel mitverfolgen, weswegen sie die Rakete immer höher steigen ließen und so für ein abendliches Spektakel sorgten. Schade nur, dass es keine Ankündigung gab. Ich hätte mich sonst mit meiner Kamera in Position gestellt...  

.

Einzelbild aus dem Video. Es scheint, als würde Gas oder eine Flüssigkeit von einer Rakete ausgestoßen - oder werden hier Booster abgesprengt? (Bild: Georg Görgen)

Problem nur: Es gab am 10. September keine Raketenstarts. Zumindest keine offiziellen, und auch keine "geheimen". Geheim in dem Sinne, dass sie zwar nicht offiziell angekündigt sind, aber für spezialisierte Amateure durchaus nicht unbekannt sind (mit einem solchen Fall hatten wir es in diesem Blog schon einmal zu tun). Nachdem ich den Videoclip via Meteoros-Forum und Twitter in die Welt gesetzt hatte, machten sich auch gleich einige Experten daran, die Bahn des unbekannten Flugobjekts zu bestimmen und es zu identifizieren.

Bislang ohne entscheidenen Erfolg. Vielleicht hat ja ein aufmerksamer Blogleser eine Idee?

Zwei wichtige Fragen sind bereits abgeklopft:

Stimmen Datum und Zeit? Ja, nach mehrfacher Überprüfung ist sicher, dass es defiitiv der 10. September war. Unser Rückflug war ein Tag später, also am 11. September. Wer an diesem Tag fliegt, vergisst das Datum nicht so schnell. Auch die Zeit stimmt: Zwar ging die Kamerauhr um genau 6 Minuten und 17 Sekunden vor, aber dieser Fehler ist in den obigen Zeiten bereits korrigiert. Außerdem ist im Video ein zweiter, "normaler" Satellit zu sehen, der von zwei Experten unabhängig voneinander als Cosmos 1410 identifiziert wurde. Schließlich ist am linken unteren Bildrand knapp die untergehende Venus zu sehen. Deren Untergang berechnet calsky.com für La Palma am 10. September 2013 für 21:16 Uhr Ortszeit. Berücksichtigt man die Kimmtiefe von 1,5° auf 2300m Seehöhe, dann dürfte sich der Untergang um wenige Minuten verzögern, eben auf den Zeitraum des Videos: 21:16-21:20 Ortszeit.

Handelt es sich um einen Kamerareflex? Unwahrscheinlich, schon vom Aussehen des Objekts zu urteilen. Überzeugt, dass es definitiv ein Objekt am Himmel war, bin ich aber aus folgendem Grund: Zwar haben wir in den entscheidenen Minuten eine Kaffeepause in der Residencia des Observatorio del Roque de los Muchachos gemacht, das eigentliche Ereignis also verpasst. Beim Hinausgehen erinnere mich aber an diese seltsame, vertikale "Wolke" am ansonsten völlig klaren Westhimmel. Wir unterhielten uns noch darüber und meinten, dass könne der persistent train einer Feuerkugel sein, und mit ein bisschen Glück sollten wir sie auf dem Film haben. Ich hatte diesen Vorfall schon wieder vergessen. Bis heute.

Halten wir also fest: Es handelt sich sicher um ein reales Himmelsobjekt, und auch Zeit und Datum sind bis auf eine geringe Unsicherheit bekannt. Was aber war es - wenn nicht ein Raketenstart? Bislang zeichnen sich vier Erklärungsmöglichkeiten ab:

Es war nicht nur ein geheimer, sonder ein sehr geheimer Start, von dem auch Satellitenbeobachter nicht wussten.

Es handelt sich um eine alte Raketenstufe, über die ebenfalls keine Daten von der US-Regierung veröffentlicht sind. Nach der Aussage eines Experten ist das möglich, es gibt wohl etliche Objekte, die dem Space-Debris-Tracking engehen. Dass ein solches Stück Weltraumschrott allerdings größere Mengen Treibstoff ablässt (wie soll sich sonst der "Nebel" erklären), kommt mir reichlich unwahrscheinlich vor.

Es war ein bekanntes Stück Weltraumschrott. Tatsächlich bewegte sich wenige Minuten später eine alte Atlas Centaur Raketenstufe in der gleichen Himmelsgegend. Die aber ist 50 Jahre alt und sollte keinen Treibstoff mehr enthalten, außerdem stimmen Bahn und Zeit eben doch nicht mit dem Video überein.

Satellitenexperte Marco Langbroek konnte bislang kein Objekt in den offiziellen NORAD-Katalogen und den inoffiziellen Amateurkatalogen finden, das mit "meinem" UFO übereinstimmen könnte. Am wahrscheinlichsten erscheint daher derzeit ein geheimer, suborbitaler ballistischer Raketenstart. Es braucht nicht viel Phantasie, dass dafür aller Wahrscheinlichkeit das US-Militär verantwortlich zeichnet, das jedenfalls legt schon die Flugbahn nahe. Ein Startpunkt in Florida oder einem anderen Ort in den Vereinigten Staaten ist wahrscheinlich.

Aber auch das ist bislang Spekulation. In jedem Fall ein interessanter Fund auf unseren "Urlaubsfotos"!

.

Quelle: Mit freundlicher Genehmigung: Jan Hattenbach, http://www.scilogs.de/kosmo/blog/himmelslichter/content/about

.

In the evening of September 10, 2013, German astrophotographer Jan Hattenbach was taking images with an f2.8/24mm lens near the GranTeCa dome, at 2300 meter altitude at the Roque de los Muchachos observatory on La Palma in the Canary Islands. His camera was looking due west, out over the Atlantic Ocean, in the direction of Bootes and Virgo. The intention was to create a time lapse movie.

Between 21:16 and 21:20 UT, he captured something unexpected on his images. A strange fuzzy bright object moved over the images, spouting cloudy puffs. Above is a stack of the images: it shows the GranTeCa dome, star trails, a normal satellite (Kosmos 1410)...and the strange cloudy phenomena coming under an oblique angle from the horizon. Below is a short movie made from the images (5 second images with a 2 second interval). Note that it is a time-lapse that speeds up the event: the whole phenomena took about 2.5 minutes in real time:

Jan wrote about his strange observation on his own blog (in German) and posted his story on the AKM forum and on Twitter. Rainer Kresken forwarded it to the SeeSat-L mailinglist, and science writer/journalist Daniel Fischer tweeted to Jonathan McDowell and me whether we could explain the phenomena. Next, Jan was so kind to make his original imagery available to me.

Initially Jan reported that the images were taken near 21:23 UT (Sept 10, 2013). However, it turned out that his camera clock was off by several minutes. The event in reality happened earlier.

Luckily, a "normal" satellite is visible in the image sequence too, briefly flaring, and Cees Bassa and me could identify that satellite as Kosmos 1410 (82-096A). As the orbit of this object is known, astrometry I performed on the trail yielded the correct image times. Jan's camera clock was off by 6m 17s, as it turned out. The phenomena took place between 21:16 and 21:20 UT.

After seeing the images, my first thought was that this could be a fuel vent by a rocket booster in Earth orbit. The time and trajectory did however not match any known object, unclassified or classified.

Another option was a satellite launch. There were however no launches scheduled for this date (and this includes launches of classified objects, which you really cannot keep secret. They are publicly announced as it involves temporary restrictions to airspace down te launch trajectory, and a very visible rocket ascent from Vandenberg or Canaveral).

At that point, I started to suspect that it could perhaps be a hush-hush suborbital ballistic missile launch test, similar to the September 2, 2013, US-Israeli missile test in the Mediterranean. Harvard space historian Jonathan McDowell communicated a similar suspicion, noting that the particular part of the Atlantic has seen Poseidon SLBM tests in the past.

The thing is, that no such test was announced for this date. For example, I have found no NOTAM's  restricting airspace over parts of the Atlantic because of a missile launch. That does not mean it is not a missile test though. It just means that whoever did the test, doesn't want to acknowledge it and preferred no-one to know about it. The September 2, US-Israeli test in the Mediterranean was not announced either (it came to light because it was detected by a Russian Early Warning Radar).

If the event seen from La Palma was indeed a clandestine Medium Range Ballistic Missile test (such as I believe is the case), the primary suspects are the Unites States or Great Britain, who both operate the Trident Submarine Launched Ballistic Missile (SLBM); or the French, who operate the M45 and M51 SLBM.

Several points in the observation fit a SLBM test. The US/British Trident and the French M45/M51 are 3-stage missiles. In the stacked image and movie above, there are two sudden bursts of brightness in the trail, both accompanied by an expanding puffy cloud. I interpret these as the moments of jettison of the 1st stage and ignition of the 2nd stage; and ejection of the 2nd stage and ignition of the 3rd stage. I have marked these moments, taking place at 21:17:08 and 21:18:43 UT (so with a 1m 35s separation), in below detail of the stacked image. The corresponding astrometric positions of these points are RA 205.061, Dec -3.950, and RA 211.366, Dec -6.153 degrees.

Below are details from the single still images from those moments:

Below is a detail from a single frame just after what I interpret as the 3rd stage ignition, showing a bright fuzzy trail and expanding vapour clouds on both sides:

The duration of the event fits what is known of the Trident missile: from launch to 3rd stage ignition takes less than 2 minutes with the Trident. The 2nd stage ignites at about 70 km altitude, the 3rd at about 150km altitude.

A careful look at the stacked image shows that after what I interpret as the 3rd stage ignition, the trajectory clearly starts to deviate from the previous more or less straight line:

This is not an effect of lens distortion, as I will show below. It is a real deviation, that fits a missile launch. It shows unequivocally that the phenomena is not a fuel vent by a rocket booster in earth orbit. Such an object (moving in a Great Circle) would move in a straight line when positions are plotted in a Gnomonic projection. I did this for Jan's object: I astrometrically measured points on the trail and converted and plotted the measured RA/DEC in a gnomonic projection system. The same deviation that should not be there if this was an object in Earth orbit is visible in the RA/DEC data:

This makes very clear that Jan's object was not in orbit around the earth, but on a launch/ballistic trajectory. So we can definitely exclude a rocket booster orbiting the earth from a previous launch and venting fuel.

Just to support my previous argument further: here is what the trajectory in RA/DEC looks like for an object in an eccentric GTO orbit observed near perigee over a similar time span as Jan's object. The comparison object is the USA 40 rocket (1989-061D):

Assuming the La Palma event indeed was an unacknowledged Trident SLBM test by the USA or the British, the known specs of the Trident provide a (very) rough indication of where the launch took place.

As mentioned earlier, the 2nd stage of a Trident SLBM ignites at about 70 km altitude, the 3rd at about 150km altitude. As mentioned too above, I interpret two points in the trail to represent these moments. By measuring their astrometric position and calculating the corresponding azimuth and elevation in the sky, we can get a rough indication of distance and direction at these moments. I did this as a (please note) very rough back-of-the-envelope calculation. It suggests the launch took place near latitude 23-25N and a longitude several degrees West of  40 W. This is right in the middle of the Atlantic, at least 2000-3000 km from any coast in any direction. Again, that points to a Submarine launched missile. The launch azimuth is roughly 80-85 degrees, towards the African coast at a distance of over 3000 km.

The USA was testing missile intercepts near Kwajalein in the Pacific that same September 10. It is however highly unlikely that the launch that Jan seems to have captured is directly related, for the simple reason that a Trident launched in the Mid-Atlantic does not have the necessary reach to get to Kwajalein.

It is a busy time with missile tests: after the September 2 test in the Mediterranean, the September 10 tests near Kwajalein, and this potential unacknowledged test captured by Jan Hattenbach that same date, there was also a missile test in New Mexico on September 13. The Kwajalein tests were scheduled well before, but the unannounced September 2 test in the Mediterranean and perhaps also this unacknowledged September 10 test in the Atlantic might be part of ad hoc military practise exercises in connection to the continuing situation with Syria.

One question some might raise: why a Medium range Ballistic Missile launch? Why can't this not be an unacknowledged launch into Earth orbit? First: it would not be possible to keep such a launch from a US landbased site a secret. It would be seen over a wide area (like the New Mexico test) and necessitate temporary closure of parts of airspace. Moreover, altitudes and directions really point to a launch in the Mid-Atlantic. The only way to launch into Earth Orbit over the Mid Atlantic would be by an airborne launch using a Pegasus rocket.

All in all, and given the context of the situation in Syria and the September 2 test in the Mediterranean as well, it is much more likely that this is an unacknowledged SLBM test, launched from a US, British or French submarine in the Mid-Atlantic.

(note: I thank Jan Hattenbach for making available his original imagery and for his permission to use it on this blog. And I thank Cees Bassa, Jonathan McDowell, Rainer Kresken and Daniel Fischer for discussions. Conclusions and any errors are solely mine).

Quelle: SatTrackCam Leiden

-

Update: 27.09.2013

.

Mein erstes UFO... 2 UPDATEs
von Jan Hattenbach
...und es hat mich nicht mitgenommen. Schade. Egal, spannend ist allemal, was wir bei unserem kürzlichen La-Palma-Aufenthalt aufgenommen haben. Eigentlich wollten wir das größte optische Teleskop der Welt, das GranTeCan, bei der Arbeit filmen. Das ist auch gelungen, doch beim Zusammensetzen des Zeitraffers fiel mir ein ziemlich merkwürdiges Objekt auf.
.
UPDATE, 21.09.: Marco Langbroek hat in einer sehr ausführlichen Analyse dargelegt, dass eigentlich nur ein geheimer Raketenstart einer ballistischen Rakete von einem UBoot im Atlantik als Erklärung in Frage kommt. Die Helligkeitsschwankungen des Objekts deutet er als Zündungen mehrere Raketenstufen, höchstwahrscheinlich einer militärischen Trident Rakete, die von US-amerikanischen und britischen UBooten eingesetzt werden.
Hier noch ein Stack des unten gezeigten Videos, der die Flugbahn des Objekts besser zeigt:
.
.
[UPDATED: confirmed!] A clandestine launch in the Mid-Atlantic on Sep 10, captured by a German astrophotographer?
UPDATE 24 Sep 2013 18:00:
It has now been confirmed that this was a US Trident SLBM test launched from an Ohio-class submerged submarine! So I was right! 
(note added 25 Sep 2013: a post with more info subsequently come to light and an update on the probable launch trajectory is available here)
In the evening of September 10, 2013, German astrophotographer Jan Hattenbach was taking images with an f2.8/24mm lens near the GranTeCa dome, at 2300 meter altitude at the Roque de los Muchachos observatory on La Palma in the Canary Islands. His camera was looking due west, out over the Atlantic Ocean, in the direction of Bootes and Virgo. The intention was to create a time lapse movie.
Between 21:16 and 21:20 UT, he captured something unexpected on his images. A strange fuzzy bright object moved over the images, spouting cloudy puffs. Above is a stack of the images: it shows the GranTeCa dome, star trails, a normal satellite (Kosmos 1410)...and the strange cloudy phenomena coming under an oblique angle from the horizon. Below is a short movie made from the images (5 second images with a 2 second interval). Note that it is a time-lapse that speeds up the event: the whole phenomena took about 2.5 minutes in real time:
 
Jan wrote about his strange observation on his own blog (in German) and posted his story on the AKM forum and on Twitter. Rainer Kresken forwarded it to the SeeSat-L mailinglist, and science writer/journalist Daniel Fischer tweeted to Jonathan McDowell and me whether we could explain the phenomena. Next, Jan was so kind to make his original imagery available to me.
Initially Jan reported that the images were taken near 21:23 UT (Sept 10, 2013). However, it turned out that his camera clock was off by several minutes. The event in reality happened earlier.
Luckily, a "normal" satellite is visible in the image sequence too, briefly flaring, and Cees Bassa and me could identify that satellite as Kosmos 1410 (82-096A). As the orbit of this object is known, astrometry I performed on the trail yielded the correct image times. Jan's camera clock was off by 6m 17s, as it turned out. The phenomena took place between 21:16 and 21:20 UT.
After seeing the images, my first thought was that this could be a fuel vent by a rocket booster in Earth orbit. The time and trajectory did however not match any known object, unclassified or classified.
Another option was a satellite launch. There were however no launches scheduled for this date (and this includes launches of classified objects, which you really cannot keep secret. They are publicly announced as it involves temporary restrictions to airspace down te launch trajectory, and a very visible rocket ascent from Vandenberg or Canaveral).
At that point, I started to suspect that it could perhaps be a hush-hush suborbital ballistic missile launch test, similar to the September 2, 2013, US-Israeli missile test in the Mediterranean. Harvard space historian Jonathan McDowell communicated a similar suspicion, noting that the particular part of the Atlantic has seen Poseidon SLBM tests in the past.
The thing is, that no such test was announced for this date. For example, I have found no NOTAM's  restricting airspace over parts of the Atlantic because of a missile launch. That does not mean it is not a missile test though. It just means that whoever did the test, doesn't want to acknowledge it and preferred no-one to know about it. The September 2, US-Israeli test in the Mediterranean was not announced either (it came to light because it was detected by a Russian Early Warning Radar).
If the event seen from La Palma was indeed a clandestine Medium Range Ballistic Missile test (such as I believe is the case), the primary suspects are the Unites States or Great Britain, who both operate the Trident Submarine Launched Ballistic Missile (SLBM); or the French, who operate the M45 and M51 SLBM.
Several points in the observation fit a SLBM test. The US/British Trident and the French M45/M51 are 3-stage missiles. In the stacked image and movie above, there are two sudden bursts of brightness in the trail, both accompanied by an expanding puffy cloud. I interpret these as the moments of jettison of the 1st stage and ignition of the 2nd stage (note: but see update here); and ejection of the 2nd stage and ignition of the 3rd stage. I have marked these moments, taking place at 21:17:08 and 21:18:43 UT (so with a 1m 35s separation), in below detail of the stacked image. The corresponding astrometric positions of these points are RA 205.061, Dec -3.950, and RA 211.366, Dec -6.153 degrees.
Below is a detail from a single frame just after what I interpret as the 3rd stage ignition, showing a bright fuzzy trail and expanding vapour clouds on both sides:
The duration of the event fits what is known of the Trident missile: from launch to 3rd stage ignition takes less than 2 minutes with the Trident. The 2nd stage ignites at about 70 km altitude, the 3rd at about 150km altitude.
A careful look at the stacked image shows that after what I interpret as the 3rd stage ignition, the trajectory clearly starts to deviate from the previous more or less straight line:
This is not an effect of lens distortion, as I will show below. It is a real deviation, that fits a missile launch. It shows unequivocally that the phenomena is not a fuel vent by a rocket booster in earth orbit. Such an object (moving in a Great Circle) would move in a straight line when positions are plotted in a Gnomonic projection. I did this for Jan's object: I astrometrically measured points on the trail and converted and plotted the measured RA/DEC in a gnomonic projection system. The same deviation that should not be there if this was an object in Earth orbit is visible in the RA/DEC data:
 
This makes very clear that Jan's object was not in orbit around the earth, but on a launch/ballistic trajectory. So we can definitely exclude a rocket booster orbiting the earth from a previous launch and venting fuel.
Just to support my previous argument further: here is what the trajectory in RA/DEC looks like for an object in an eccentric GTO orbit observed near perigee over a similar time span as Jan's object. The comparison object is the USA 40 rocket (1989-061D):
Assuming the La Palma event indeed was an unacknowledged Trident SLBM test by the USA or the British, the known specs of the Trident provide a (very) rough indication of where the launch took place.
As mentioned earlier, the 2nd stage of a Trident SLBM ignites at about 70 km altitude, the 3rd at about 150km altitude. As mentioned too above, I interpret two points in the trail to represent these moments. By measuring their astrometric position and calculating the corresponding azimuth and elevation in the sky, we can get a rough indication of distance and direction at these moments. I did this as a (please note) very rough back-of-the-envelope calculation. It suggests the launch took place near latitude 23-25N and a longitude several degrees West of  40 W. This is right in the middle of the Atlantic, at least 2000-3000 km from any coast in any direction. Again, that points to a Submarine launched missile. The launch azimuth is roughly 80-85 degrees, towards the African coast at a distance of over 3000 km. (note added 25 Sept: but see update here that somewhat changes the picture)
The USA was testing missile intercepts near Kwajalein in the Pacific that same September 10. It is however highly unlikely that the launch that Jan seems to have captured is directly related, for the simple reason that a Trident launched in the Mid-Atlantic does not have the necessary reach to get to Kwajalein.
It is a busy time with missile tests: after the September 2 test in the Mediterranean, the September 10 tests near Kwajalein, and this potential unacknowledged test captured by Jan Hattenbach that same date, there was also a missile test in New Mexico on September 13. The Kwajalein tests were scheduled well before, but the unannounced September 2 test in the Mediterranean and perhaps also this unacknowledged September 10 test in the Atlantic might be part of ad hoc military practise exercises in connection to the continuing situation with Syria.
One question some might raise: why a Medium range Ballistic Missile launch? Why can't this not be an unacknowledged launch into Earth orbit? First: it would not be possible to keep such a launch from a US landbased site a secret. It would be seen over a wide area (like the New Mexico test) and necessitate temporary closure of parts of airspace. Moreover, altitudes and directions really point to a launch in the Mid-Atlantic. The only way to launch into Earth Orbit over the Mid Atlantic would be by an airborne launch using a Pegasus rocket.
All in all, and given the context of the situation in Syria and the September 2 test in the Mediterranean as well, it is much more likely that this is an unacknowledged SLBM test, launched from a US, British or French submarine in the Mid-Atlantic.
UPDATE 24 Sep 2013 18:00:
It has now been confirmed that this was a US Trident SLBM test launched from an Ohio-class submerged submarine! So I was right! 
Update 25 Sep 2013: New post with new info here, including re-assessment of the launch trajectory 
(note: I thank Jan Hattenbach for making available his original imagery and for his permission to use it on this blog. And I thank Cees Bassa, Jonathan McDowell, Rainer Kresken and Daniel Fischer for discussions. Conclusions and any errors are solely mine).
APPENDIX  - added 24 Sept 2013, 19:50
Below are the astrometric data I used in my analysis. I did not measure every image, but enough to describe the track of the object. Measurements were done with AstroRecord astrometric software. Only the start of each trail segment was measured, except for IMG_1848 where the point where it brightens (3rd stage ignition) was measured as well. The observing site is at 28.7564 N, 17.8889 W and 2300 meter altitude. Times are accurate to ~1 second.
IMG       UT        RA        DEC 
1835      21:17:08  205.061  -3.950 
1838      21:17:29  206.335  -4.418 
1840      21:17:43  207.272  -4.737 
1843      21:18:04  208.731  -5.228 
1846      21:18:25  210.137  -5.743 
1848      21:18:39  211.071  -6.089 
1848_ign? 21:18:43  211.366  -6.153 
1850      21:18:53  212.081  -6.416 
1852      21:19:07  213.008  -6.790 
1853      21:19:14  213.489  -6.977 
1855      21:19:28  214.450  -7.388 
1856      21:19:35  214.907  -7.585  
1857      21:19:42  215.493  -7.786
Quelle: SATTRACKCAM LEIDEN
.
2. UPDATE 24.9.:
Wie allgemein vermutet, handelte es sich bei meinem UFO um einen Raketentest, und zwar einer ballistischen Rakete des Typs Trident II D5, die von einem US-amerikanischen UBoot abgefeuert wurde. Hier die Bestätigung. Allerbesten Dank noch mals an Marco Langbroek und Cees Bassa für die Hilfe bei der Aufklärung dieses Rätsels!  
.
A Trident II launch from a submerged submarine.
.

Lockheed Martin-Built Trident II D5 Missile Achieves A Total Of 148 Successful Test Flights Since 1989

SUNNYVALE, Calif., Sept. 24, 2013 /PRNewswire/ -- The U.S. Navy has conducted four successful test flights of the Trident II D5 Fleet Ballistic Missiles built by Lockheed Martin [NYSE: LMT]. The U.S. Navy launched the unarmed missiles Sept. 10 and 12 in the Atlantic Ocean from a submerged Ohio-class submarine home-ported at Naval Submarine Base Kings Bay, Georgia.
This event marked the 145th, 146th, 147th and 148th successful test flights of the D5 missile since design completion in 1989 – a reliability record unmatched by any other large ballistic missile.
"This ultra-capable system serves a critical role in deterring aggression," said Doug White, vice president of Fleet Ballistic Missile programs, Lockheed Martin Space Systems Company, the Navy's Trident missile prime contractor. "We are dedicated to supporting Navy Strategic Systems Programs in assuring the system's continued readiness, reliability, performance and affordability."
The Navy launched the missiles as part of Follow-on Commander's Evaluation Tests. The missiles had been converted into test configurations using kits produced by Lockheed Martin that contain range safety devices and flight telemetry instrumentation. As required by the Department of Defense's National Command Authority, the U.S. Navy conducts a continuing series of operational system evaluation tests of the Trident Strategic Weapon System under the testing guidelines of the Joint Chiefs of Staff.
First deployed in 1990, the D5 missile is currently aboard U.S. Navy Ohio-class and U.K. Royal Navy Vanguard-class submarines. The three-stage, solid-propellant, inertial-guided ballistic missile can travel a nominal range of 4,000 nautical miles and carries multiple independently targeted reentry bodies. The Fleet Ballistic Missile team has produced six generations, each more capable than its predecessor: the Polaris A1, Polaris A2, Polaris A3, Poseidon C3, Trident I C4 and Trident II D5 missiles.
Lockheed Martin has been the Navy's strategic missile prime contractor since the program's inception in 1955. The United States and the United Kingdom signed the Polaris Sales Agreement in 1963, which was modified in 1982 to provide for the Trident II D5 missile system. Since 1968, Lockheed Martin has provided program management and engineering services to the Royal Navy under the terms of the agreement.
Lockheed Martin employees, principally in California, Georgia, Florida, Washington, Utah, Virginia, Scotland and England, support the design, development, production, test, operation and sustainment of the Trident Strategic Weapon System.
Lockheed Martin leads the industry in performance and domain expertise in strategic missile and missile defense systems, designing and producing ballistic missiles, interceptors, target missiles and reentry systems with unmatched reliability and a focus on affordable high-quality systems and services.
Headquartered in Bethesda, Md., Lockheed Martin is a global security and aerospace company that employs about 116,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products, and services. The corporation's net sales for 2012 were $47.2 billion.  
Quelle: prnewswire



Tags: missile test La Palma IFO Hattenbach Atlantic Trident UFO 

4015 Views

Freitag, 27. September 2013 - 15:00 Uhr

UFO-Forschung - TV-Tip: "Hirngespinste - Wenn uns die Sinne trügen": ZDF Wissenschaftsreihe "Abenteuer Forschung" am 1.Oktober 2013

.

"Hirngespinste - Wenn uns die Sinne trügen": ZDF Wissenschaftsreihe
"Abenteuer Forschung" über die Grenzen unserer Wahrnehmung
Mainz (ots) - In der neuen Folge des ZDF-Wissenschaftsmagazins
"Abenteuer Forschung" am Dienstag, 1. Oktober 2013, 23.25 Uhr, begibt
sich Professor Harald Lesch auf die Suche nach den Phänomenen in
unserem Kopf. "Hirngespinste - Wenn uns die Sinne trügen" gibt
erstaunliche Antworten auf Fragen, die vermeintlich ins Reich der
Phantasie gehören.
Fünf Sinne hat der Mensch, doch können wir uns auf diese wirklich
immer verlassen? Der Mond beispielsweise erscheint uns manchmal größer
als sonst. Aber warum? Von Zauberern lassen wir uns gern täuschen.
Zwar weiß jeder, dass die Illusionen der Magier auf Tricks beruhen,
trotzdem ist es beinahe unmöglich, hinter ihre Geheimnisse zu kommen.
Der Schlüsselbegriff zur Erklärung des Phänomens heißt selektive
Wahrnehmung. Für sogenannte Inselbegabte ist alles gleich wichtig,
alle Sinneseindrücke bahnen sich ungefiltert ihren Weg ins Gehirn.
Dadurch sind diese Menschen zu außergewöhnlichen Gedächtnisleistungen
im Stande. Menschen mit besonderen Fähigkeiten stehen im Fokus von
Geheimdiensten. Bereits zu Zeiten des Kalten Krieges rief die CIA ein
Projekt ins Leben, bei dem bestimmte Agenten auf parapsychologischem
Weg Informationen von entfernten Orten ausspionieren sollten.
Wissenschaftler sind Telepathie und Co. auf der Spur. Was hat es mit
diesem berühmt-berüchtigten sechsten Sinn auf sich?
Professor Harald Lesch präsentiert eine Sendung, die bis an die
Grenzen der Wahrnehmung - und darüber hinaus - führt. Er berichtet von
ungewöhnlichen Fähigkeiten, von UFOs* sowie von vermeintlichen
Entführungen durch Aliens und erklärt, was unsere Sinne dazu bringt,
Eindrücke zu vermitteln, die nichts mit der Wirklichkeit zu tun haben.
.
Frams: ZDF-Beitrag 2009
 

2813 Views

Freitag, 27. September 2013 - 09:51 Uhr

Astronomie - Mond Orbiter erforschen das Weltraumwetter Nähe der Erde

.

Process of magnetic reconnection, which powers the phenomena known as space weather.
 
Solar storms — powerful eruptions of solar material and magnetic fields into interplanetary space — can cause what is known as "space weather" near Earth, resulting in hazards that range from interference with communications systems and GPS errors to extensive power blackouts and the complete failure of critical satellites.
 
New research published today increases our understanding of Earth's space environment and how space weather develops. 
 
Some of the energy emitted by the sun during solar storms is temporarily stored in Earth's stretched and compressed magnetic field. Eventually, that solar energy is explosively released, powering Earth's radiation belts and lighting up the polar skies with brilliant auroras. And while it is possible to observe solar storms from afar with cameras, the invisible process that unleashes the stored magnetic energy near Earth had defied observation for decades.
 
In the Sept. 27 issue of the journal Science, researchers from the UCLA College of Letters and Science, the Austrian Space Research Institute (IWF Graz) and the Japan Aerospace Exploration Agency (JAXA) report that they finally have measured the release of this magnetic energy close up using an unprecedented alignment of six Earth-orbiting spacecraft and NASA's first dual lunar orbiter mission, ARTEMIS.
 
Space weather begins to develop inside Earth's magnetosphere, the giant magnetic bubble that shields the planet from the supersonic flow of magnetized gas emitted by the sun. During solar storms, some solar energy enters the magnetosphere, stretching the bubble out into a long, teardrop-shaped tail that extends more than a million miles into space.
 
The stored magnetic energy is then released by a process called "magnetic reconnection." This event can be detected only when fast flows of energized particles pass by a spacecraft positioned at exactly the right place at the right time.
 
Luckily, this happened in 2008, when NASA's five Earth-orbiting THEMIS satellites discovered that magnetic reconnection was the trigger for near-Earth substorms, the fundamental building blocks of space weather. However, there was still a piece of the space weather puzzle missing: There did not appear to be enough energy in the reconnection flows to account for the total amount of energy released for typical substorms.
 
In 2011, in an attempt to survey a wider area of the Earth's magnetosphere, the THEMIS team repositioned two of its five spacecraft into lunar orbits, creating a new mission dubbed ARTEMIS after the Greek goddess of the hunt and the moon. From afar, these two spacecraft provided a unique global perspective of energy storage and release near Earth.
 
 
Similar to a pebble creating expanding ripples in a pond, magnetic reconnection generates expanding fronts of electricity, converting the stored magnetic energy into particle energy. Previous spacecraft observations could detect these energy-converting reconnection fronts for a split second as the fronts went by, but they could not assess the fronts' global effects because data were collected at only a single point.
 
By the summer of 2012, however, an alignment among THEMIS, ARTEMIS, the Japanese Space Agency's Geotail satellite and the U.S. National Oceanic and Atmospheric Administration's GOES satellite was finally able to capture data accounting for the total amount of energy that drives space weather near Earth.
 
During this event, reported in the current Science paper, a tremendous amount of energy was released.
 
"The amount of power converted was comparable to the electric power generation from all power plants on Earth — and it went on for over 30 minutes," said Vassilis Angelopoulos, a professor in the UCLA Department of Earth, Planetary and Space Sciences, principal investigator for ARTEMIS and THEMIS, and lead author of the research in Science. "The amount of energy released was equivalent to a 7.1 Richter-scale earthquake."
Trying to understand how gigantic explosions on the sun can have effects near Earth involves tracking energy from the original solar event all the way to Earth. It is like keeping tabs on a character in a play who undergoes many costume changes, researchers say, because the energy changes frequently along its journey: Magnetic energy causes solar eruptions that lead to flow energy as particles hurtle away, or to thermal energy as the particles heat up.
 
Near Earth, that energy can go through all the various changes in form once again. Understanding the details of each step in the process is crucial for scientists to achieve their goal of someday predicting the onset and intensity of space weather.
 
Using ARTEMIS, a clear picture emerged of the total energy stored, and the entire fleet of satellites tracked the energy fronts at high time resolution, Angelopoulos said.
 
The spacecraft and satellites observed two expanding energy fronts launched symmetrically on either side of the magnetic reconnection site, one moving toward Earth and the other away from it, past the moon. The magnetic energy was transformed into particle and wave energy during its quarter-million–mile journey from its origin within a narrow region only a few dozen miles across.
 
This, the researchers said, explains why single-satellite measurements in the past did not make much of the energy release. The multiple satellite fleet, however, showed that the energy conversion continued for up to 30 minutes after the onset of reconnection.
 
"We have finally found what powers Earth's aurora and radiation belts," Angelopoulos said. "It took many years of mission planning and patience to capture this phenomenon on multiple satellites, but it has certainly paid off. We were able to track the total energy and see where and when it is converted into different kinds of energy."
 
With the full, global picture of energy storage and transfer in the magnetosphere, scientists can now focus their attention on the physics of the energy conversion and its eventual dissipation in order to improve space weather forecasts.
 
What scientists learn on Earth can also inform our knowledge elsewhere in our solar system. The sun's eruptions are also controlled largely by magnetic reconnection, and intense auroras at Jupiter create the most powerful electromagnetic emissions in the solar system besides the sun, Angelopoulos said.
 
Similar emissions from planets orbiting other stars may one day reveal the interior structure of distant worlds. Since the sun's surface and very distant planets cannot yet be visited, there is no place better than Earth's own space environment to study energy transformation on large and small scales with a coordinated fleet of highly capable satellites, he said.
 
NASA is currently building the Heliophysics System Observatory, which combines existing and future satellite resources in space, including THEMIS, ARTEMIS, the recently launched twin Van Allen Radiation Belt Probes, and the four Magnetospheric MultiScale satellites, which will be launched in 2014 (and which have involved UCLA scientific and hardware participation).
 
"It is a very exciting time ahead," said David Sibeck, THEMIS/ARTEMIS project scientist at NASA's Goddard Space Flight Center. "Never before did we have the possibility for so many high-quality observatories lining up."
 
ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. THEMIS (Time History of Events and Macroscale Interactions during Substorms) was launched Feb. 17, 2007, from Cape Canaveral, Fla., to impartially resolve the trigger mechanism of substorms. Themis was the blindfolded Greek goddess of order and justice.
 
THEMIS and ARTEMIS are part of NASA's Explorer program, managed by the Goddard Space Flight Center. UC Berkeley's Space Sciences Laboratory is responsible for mission operations and built several of the on-board and ground-based instruments. Austria, Canada, France and Germany contributed instrumentation, operations and science. ATK (formerly Swales Aerospace), built the THEMIS spacecraft. ARTEMIS's orbit design, navigation and execution were the result of a collaborative effort among NASA's Jet Propulsion Laboratory, the Goddard Space Flight Center and UC Berkeley. UCLA scientists built the ground magnetometers.
 
UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.
Quelle: UCLA

Tags: ARTEMIS 

3222 Views

Freitag, 27. September 2013 - 09:05 Uhr

Raumfahrt - Mars Rover Curiosity überrascht mit 2% Wasser bei Bodenproben

.

Curiosity stopped at a location called Rocknest to sample some of the wind-blown sand and dust

.

There is a surprising amount of water bound up in the soil of Mars, according to an analysis done onboard the US space agency's (Nasa) Curiosity rover.
When it heated a small pinch of dirt scooped up from the ground, the most abundant vapour detected was H2O.
Curiosity researcher Laurie Leshin and colleagues tell Science Magazine that Mars' dusty red covering holds about 2% by weight of water.
This could be a useful resource for future astronauts, they say.
"If you think about a cubic foot of this dirt and you just heat it a little bit - a few hundred degrees - you'll actually get off about two pints of water - like two water bottles you'd take to the gym," Dr Leshin explained.
"And this dirt on Mars is interesting because it seems to be about the same everywhere you go. If you are a human explorer, this is really good news because you can quite easily extract water from almost anywhere."
The dean of science at the Rensselaer Polytechnic Institute, New York, has been describing her work with Curiosity in this week's Science In Action programme on the BBC.
The revelation about the amount of water chemically bound into the fine-grained particles of the soil is just one nugget of information to come from a series of five papers in the respected journal describing the early exploits of the rover.
Some of this data has been reported previously at science meetings and in Nasa press conferences, but the formal write-up gives an opportunity for the wider research community to examine the detail.
'Good and bad'
Dr Leshin's and colleagues' publication concerns a sample analysis done at "Rocknest", a pile of wind-blown sand and silt about 400m from where Curiosity touched down on the floor of Gale Crater in August 2012.
The robot used its tools to pick up, sieve and deliver a smidgeon of this Martian dirt to the Sam instrument hidden away inside the belly of the vehicle.
.
The wind has eroded Jake_M into the striking shape of a pyramid
.
Sam has the ability to cook samples and to identify any gases that are released. These products are diagnostic of the different components that make up the soil.
So, for example, Curiosity saw a significant proportion of carbon dioxide - the likely consequence of carbonate minerals being present in the sample. Carbonates form in the presence of water.
And it saw oxygen and chlorine - a signal many had expected to see following similar studies in Mars' "High Arctic" by Nasa's Phoenix lander in 2008.
"[We think these] are break-down products from a mineral called perchlorate, and that's there at about a half-a-percent in the soil," said Dr Leshin.
"If the water was the good news for the astronauts, this is the bad news. Perchlorate actually interferes with thyroid function, so it could be a problem if humans were to ingest some of the fine dust on Mars. It's just something we need to know about now so we can plan for it later."
Scottish link
Three of the other Curiosity papers in the Science Magazine release also concern themselves with the nature of the Martian soil.
The fifth is a report that describes a pyramid-shaped rock found in the vehicle's path. This striking block was dubbed Jake Matijevic, in honour of a recently deceased Nasa engineer.
The team led by Prof Ed Stopler from Caltech, Pasadena, can now confirm that Jake_M is a rock not seen before on the Red Planet.
It is most like a mugearite, says the group - a type of rock found on islands and rift zones on Earth.
"On Earth, we have a pretty good idea how mugearites and rocks like them are formed," said co-worker Prof Martin Fisk from Oregon State University, Corvallis.
"It starts with magma deep within the Earth that crystallises in the presence of 1-2% water.
"The crystals settle out of the magma and what doesn't crystallise is the mugearite magma, which can eventually make its way to the surface as a volcanic eruption."
Mugearite was first identified on Earth by British petrographer/petrologist Alfred Harker. The name references a local croft, Mugeary, on the Isle of Skye, just off the Scottish mainland.
The Curiosity rover is currently engaged in some hard driving in Gale Crater. Since early July, it has been rolling tens of metres a day.
The robot is trying to reach the foothills of the large mountain that dominates the centre of the deep, equatorial impact bowl.
Quelle: BBC
.

Water Discovery Is Good News for Mars Colonists

The discovery of water in the soils of Mars bodes well for potential future settlers, but don't pack your bags quite yet.
   
Water Found on Mars ... FOR REAL!
The results come from NASA's Mars rover Curiosity, which landed inside a giant impact basin in August 2012 to assess if the planet most like Earth in the solar system has or ever had the chemical ingredients and environments for life.
Its first analysis of fine-grained sand scooped up from the planet’s surface revealed between 1.5 percent and 3 percent of water by weight.
"If you take a cubic foot of that soil you can basically get two pints of water out it -- a couple of water bottles like you'd take to the gym, worth of water," Curiosity scientist Laurie Leshin, of Rensselaer Polytechnic Institute, N.Y., told Discovery News.
"It was kind of a surprise to me," she added.
Leshin and colleagues found the water -- along with sulfur dioxide, carbon dioxide, water and other gases -- by heating tiny bits of the soil inside Curiosity’s onboard laboratory and analyzing released gases with science instruments.
The way the water was released indicates it likely was absorbed into the soil from the atmosphere, a telltale clue that water-laced soil is globally spread.
NEWS: This Scoop of Mars Soil is Two Percent Water
"The water is not very well bound at all. You still have to sort of gently heat this stuff, but it comes off pretty easily," Leshin said.
"It’s good news from the point of view of future of human space missions," added Curiosity lead scientist John Grotzinger, with the California Institute of Technology.
"It’s also good news from the point of the view of microbes. If there’s a chance for modern life on Mars, if there was a way that these fine materials could have been exploited to produce water, it might have helped in that sense," Grotzinger told Discovery News.
The analysis, however, also revealed a potential hazard in the soil -- perchlorates, which are known to impact human thyroid production of hormones.
"We would need to think about how we would mitigate any hazard from that," Leshin said.
As a first step in developing technology to live off the Martian land, NASA is planning to include an experiment on its next rover that would pull carbon dioxide out of the atmosphere and purify it. Ultimately, the gas could be converted into oxygen for breathing and for propellant. The rover, which will be a copy of the Curiosity chassis and landing system, but with different science instruments, is targeted for launch in 2020.
Curiosity’s analysis also showed no clear indigenous source for organic carbon found on Mars, though it did not rule out that possibility either.
The research appears in special report in this week’s Science on the first 100 days of the Mars Curiosity mission.
Quelle: D-News

2909 Views

Donnerstag, 26. September 2013 - 23:30 Uhr

Raumfahrt - Ausländische Astronauten sollen an Bord von Chinas Raumstation

.

20.09.2013

Foreign astronauts expected aboard China's space station

.

A senior Chinese space scientist announced on Friday that China's space station is expected to be opened to foreign astronauts.

"The space station will offer astronauts from around the world opportunities for research and experimentation," Zhou Jianping, designer-in-chief of China's manned space program, told Xinhua at the sidelines of an international symposium held in Beijing from Monday to Friday.

China's space station is expected to be completed around 2020.

Representatives from more than 20 countries and international organizations exchanged views on space technology cooperation, in a bid to promote the transformation and use of space technology.

"The space station will use cutting-edge technologies, such as energy and regeneration technologies," Zhou added.

Zhou said that China is willing to exchange and cooperate with other countries in the field after the completion of the space station, in order to achieve peaceful use of space resources and mutual development.

The space station has been designed to accommodate three astronauts who will work in half-year shifts during its operation period, but new capsules can be added as needed for scientific research.

Quelle: Xinhua

.

Update: 26.09.2013

.

China startet Raumstation bis 2023

,

China expects to complete its first orbiting space station within a decade.

 

The station, in low-Earth orbit, will be able to support six crew on short-term missions and three for long-term stays.

 

Its design consists of three capsules - a core module attached to two laboratories - with a cargo vessel to transport supplies.

 

The 2023 launch target was revealed at the International Astronautical Congress (IAC) in Beijing.

 

According to the China Manned Space Agency, the space station will cover an area of 60 sq m.

 

Its core module (18.1m long) will weigh 20 to 22 metric tonnes and will be attached to two self-contained labs.

 

Test mission

 

Once operational, astronauts would be able to make long-term missions in orbit and conduct technical tests and science experiments, said Wang Zhaoyao, the director of the space agency.

 

But before all this, China must first test technologies in renewable life support and in-orbit refuelling.
Perfecting these would be essential for the planned station, said Xu Dazhe, general manager of China Aerospace Science and Technology Corp.
To carry out the tests, China will launch the Tiangong-2 space laboratory in around two years.
One cargo "shuttle" and several manned spaceships would be launched to dock with the Tiangong-2 at different times, Mr Xu revealed.
China became the third country to independently launch a human into space in 2003 and has been rapidly expanding its space programme ever since.
In June last year, it successfully carried out its first manual space docking, another essential step in building a space station.
Three astronauts - Liu Yang, Jing Haipeng and Liu Wang - piloted Shenzhou-9 to link up with the Tiangong-1 spacelab.
China's first female astronauts - Liu Yang and Wang Yaping - appeared together at the IAC meeting.
Liu Yang said the nation was willing to accept foreign astronauts for future missions.
The annual IAC event has about 3,600 space scientists and business people attending, representing some 74 countries from across the world.
.
Quelle: BBC

 

 


3642 Views


Weitere 9 Nachrichten nachladen...