Blogarchiv
Raumfahrt - OSIRIS-REx - ASTEROID SAMPLE RETURN MISSION -Update 18

9.03.2020

First Official Names Given to Features on Asteroid Bennu

Asteroid Bennu’s most prominent boulder, a rock chunk jutting out 71 ft (21.7 m) from the asteroid’s southern hemisphere, finally has a name. The boulder – which is so large that it was initially detected from Earth – is officially designated Benben Saxum after the primordial hill that first arose from the dark waters in an ancient Egyptian creation myth.  

 

Benben Saxum and 11 other features on the asteroid are the first to receive official Bennu feature names approved by the International Astronomical Union (IAU), the internationally recognized authority for naming celestial bodies and their surface features. The accepted names were proposed by NASA’s OSIRIS-REx team members, who have been mapping the asteroid in detail over the last year. The OSIRIS-REx spacecraft, NASA’s first asteroid sample return mission, is currently visiting the asteroid and is scheduled to collect a sample from Bennu’s surface this summer.

iau-features-1-02

This flat projection mosaic of asteroid Bennu shows the locations of the first 12 surface features to receive official names from the International Astronomical Union. The accepted names were proposed by NASA’s OSIRIS-REx team members, who have been mapping the asteroid in detail over the last year. Bennu’s surface features are named after birds and bird-like creatures in mythology, and the places associated with them.
Credits: NASA/Goddard/University of Arizona

“Since arriving at the asteroid, the OSIRIS-REx team has become incredibly familiar with all of the geological features on Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “These features are providing us with insight into Bennu’s history, and their new names symbolize the essence of the mission – studying the past to both discover our origins and understand our future,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. 

 

The approved Bennu surface feature names are listed below. Bennu’s diverse terrain types – including regiones (broad geographic regions), craters, dorsa (ridges), fossae (grooves or trenches) and saxa (rocks and boulders) – will be named after birds and bird-like creatures in mythology, and the places associated with them.

 

Tlanuwa Regio is named for the giant birds who scattered the Earth with pieces of a serpent that turned into standing pillars of rocks in Cherokee mythology. Tlanuwa Regio is an area covered by large boulders in Bennu’s southern hemisphere.

 

Benben Saxum is named for an ancient Egyptian mound that arose from the primordial waters Nu. In Egyptian mythology, the god Atum settled upon Benben to create the world after his flight over the waters in the form of the Bennu bird. Benben Saxum is the tallest boulder on Bennu.

 

Roc Saxum is named for the Roc, an enormous bird of prey in Arabian mythology of the Middle East. Roc Saxum is the largest boulder feature on Bennu.

 

Simurgh Saxum is named for the benevolent, mythological bird in Persian mythology. The Simurgh was said to possess all knowledge, and Simurgh Saxum defines the prime meridian on Bennu and is the basis for the asteroid’s coordinate system.

 

Huginn Saxum and Muninn Saxum are adjacent boulders named for the two ravens, Huginn and Muninn, who accompany the god Odin in Norse mythology.

 

Ocypete Saxum is named for one of the Greek harpies, the half-maiden and half-bird personification of storm winds that would snatch and carry things away from Earth. Ocypete Saxum is located near the origin of the Jan. 19, 2019, particle ejection event on Bennu.

 

Strix Saxum is named for the Strix bird of ill-omen from Roman mythology. Strix Saxum is a large boulder flanking the OSIRIS-REx mission’s backup sample collection site.

 

Amihan Saxum is named for the Tagalog (Philippines) mythological deity, who is depicted as a bird and was the first creature to inhabit the universe. This large, flat boulder appears to be partly buried and is located in Tlanuwa Regio, which has an unusually high concentration of large boulders.

 

Pouakai Saxum is named for the monstrous bird who kills and eat humans in Māori (Polynesia) mythology. Pouakai Saxum is a 55 ft (10.6 m)-wide boulder located in Bennu’s southern hemisphere, slightly north of Benben Saxum.

 

Aetos Saxum is named for the childhood playmate of the supreme god Zeus, who was turned into an eagle by Hera in Greek mythology. Aetos Saxum is a conspicuously flat boulder, with a general wing-like shape located near Bennu’s equator.

 

Gargoyle Saxum is named for the French dragon-like monster with wings, bird-like neck, and the ability to breathe fire. Gargoyle Saxum is a large prominent boulder near the mission’s backup sample site that is one of the darkest objects on the surface.

 

NASA’s Goddard Space Flight Center in Greenbelt, Maryland provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

Quelle: NASA

+++

OSIRIS-REx Swoops Over Sample Site Nightingale

NASA’s first asteroid-sampling spacecraft just got its best look yet at asteroid Bennu. Yesterday, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft executed a very low pass over sample site Nightingale, taking observations from an altitude of 820 feet (250 m), which is the closest that OSIRIS-REx has flown over the asteroid so far. Nightingale, OSIRIS-REx’s primary sample collection site, is located within a crater in Bennu’s northern hemisphere.

 

To perform the 5-hour flyover, the spacecraft left its 0.6-mile (1-km) safe-home orbit and aimed its science instruments toward the 52-ft (16-m) wide sample site. The science observations from this pass are the closest taken of Bennu to date.

recon-c-low-flyby-ng---orbit

On Mar. 3, the OSIRIS-REx spacecraft performed a low-altitude flyover of site Nightingale. During the pass, science observations of asteroid Bennu took place from a distance of approximately 820 ft (250 m) – the closest the spacecraft has ever been to the asteroid’s surface. The primary goal of this flyover was to collect high-resolution imagery for the team to locate the site’s best areas for collecting a sample.
Credits: University of Arizona

The main goal of yesterday’s low flyover was to collect high-resolution imagery of the site’s surface material. The spacecraft’s sample collection mechanism is designed to pick up small rocks less than 0.8 inches (2 cm) in size, and the PolyCam images from this low pass are very detailed, allowing the team to identify and locate rocks of this size. Several of the spacecraft’s other instruments also took observations of the Nightingale site during the flyover event, including the OSIRIS-REx Thermal Emissions Spectrometer (OTES), the OSIRIS-REx Visual and InfraRed Spectrometer (OVIRS), the OSIRIS-REx Laser Altimeter (OLA), and the MapCam color imager.

 

After completing the flyover, the spacecraft returned to orbit – but for the first time, OSIRIS-REx reversed the direction of its safe-home orbit and is now circling Bennu clockwise (as viewed from the Sun). This shift in orbital direction positioned the spacecraft for its next close encounter with the asteroid – its first rehearsal for the sample collection event.

 

This spring, the mission will perform two rehearsals in preparation for the sample collection event. The first rehearsal, scheduled for Apr. 14, navigates the spacecraft down to 410 feet (125 m) over Bennu’s surface. At this altitude, the spacecraft will execute the Checkpoint maneuver, designed to put the spacecraft on a descent trajectory toward the sample collection site on the surface. The spacecraft will stop its descent ten minutes later at an altitude of approximately 164 ft (50 m) by executing a maneuver to back away from the asteroid. The second rehearsal, scheduled for June, follows the same trajectory but takes the spacecraft to a lower altitude of 164 feet (50 m), where it will perform the Matchpoint maneuver, designed to slow the spacecraft’s descent rate. Subsequent to this burn the spacecraft will execute a back away maneuver between 131 ft (40 m) and 82 ft (25 m) from Bennu’s surface. The spacecraft will venture all the way to the asteroid’s surface in late August, for its first attempt to collect a sample. During this event, OSIRIS-REx’s sampling mechanism will touch Bennu’s surface and fire a charge of pressurized nitrogen to disturb the surface and collect its sample before the spacecraft backs away.

 

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

Quelle: NASA

470 Views