According to quantum physics, the vacuum of space isn't really empty — virtual particles pop in and out of existence even in the emptiest of empty voids. These "virtual" particles may sound like ghostly apparitions, but now astronomers think they've spotted the interference caused by virtual particles in the dim light generated by a dense stellar nugget of degenerate matter.

This nugget is a nearby neutron star called RX J1856.5-3754, located some 400 light-years away, and researchers using the ESO's Very Large Telescope (VLT) high in the Atacama Desert in Chile have, for the first time, detected a quantum effect that was first predicted in the 1930s. This effect is known as "vacuum birefringence" and possible observational evidence of it in action could have a profound impact on our understanding of how the universe works.

It may sound strange that we can measure quantum effects near the surface of a neutron star hundreds of light-years away, but often we have to look at some of the most extreme natural "laboratories" deep in the cosmos to stand a chance of glimpsing minuscule physics that has a huge effect on astronomical data. And in the case of RX J1856.5-3754, its powerful magnetic field is thought to have manipulated virtual particles fizzing in and out of the vacuum to create a prism-like effect on the faint light generated by the neutron star.

Virtual particles underpin many curious theories in astrophysics, particularly the mechanism behind Hawking radiation — a neat theory put forward by physicist Stephen Hawking in the 1970s that suggests black holes may evaporate. Whether black holes evaporate or that virtual particles have a role to play is a matter of heated debate, but the way these ghostly quantum apparitions interact with magnetic fields can have observational effects.

In classical physics, if light travels through a vacuum, it will remain unchanged. However, if QED hold true and virtual particles are present in the vacuum immediately surrounding a neutron star, the magnetic field will interact with virtual particles to manipulate light as it travels through. This effect is predicted by "quantum electrodynamics," otherwise known as "QED." 

In this case, the VLT has detected a strange polarization of light coming from the neutron star, suggesting vacuum birefringence is at play.

"According to QED, a highly magnetized vacuum behaves as a prism for the propagation of light, an effect known as vacuum birefringence," said lead researcher Roberto Mignani, of INAF Milan in Italy and the University of Zielona Gora in Poland. Mignani's tem's research will be published in the journal Monthly Notices of the Royal Astronomical Society.

"This effect can be detected only in the presence of enormously strong magnetic fields, such as those around neutron stars," added Roberto Turolla of the University of Padua, Italy. "This shows, once more, that neutron stars are invaluable laboratories in which to study the fundamental laws of nature." 

Neutron stars are the remnants of stars around ten-times the mass of our sun. When these stars run out of hydrogen fuel, they explode as spectacular supernovas. What's left behind is a tiny and extremely dense sphere of mainly neutrons. Interestingly, these neutron stars retain the angular momentum and magnetism of their parent stars, only on a much more extreme scale. Pulsars are rapidly spinning neutron stars and these are known as the most precise "clocks" in the universe, flashing at a very steady rate. These factors make neutron stars ideal locations for astronomers to measure the effects of general relativity and strong magnetism.

And now, astronomers are using neutron stars to uncover evidence of a quantum effect that was theorized over 80 years ago, but it's only the beginning.

"Polarisation measurements with the next generation of telescopes, such as ESO's European Extremely Large Telescope, could play a crucial role in testing QED predictions of vacuum birefringence effects around many more neutron stars," said Mignani.

Image: This artist's view shows how the light coming from the surface of a strongly magnetic neutron star (left) becomes linearly polarised as it travels through the vacuum of space close to the star on its way to the observer on Earth (right).

WATCH VIDEO: How Ghost Particles Are Slowing Down Stars

Quelle: Seeker
---

Erste Hinweise auf merkwürdige Quanteneigenschaften des leeren Raums gefunden?

VLT-Beobachtungen von Neutronensternen könnten 80 Jahre alte Vorhersage zum Vakuum bestätigen

 

Astronomen haben im Licht, das von einem ungewöhnlich dichten und stark magnetisierten Neutronenstern emittiert wird, möglicherweise die ersten Hinweise auf einen seltsamen Quanteneffekt gefunden, der in den 1930er Jahren zum ersten Mal vorhergesagt wurde. Die Polarisation des Lichts, das sie mit dem Very Large Telescope der ESO beobachteten, legt nahe, dass der leere Raum um den Neutronenstern einem Quanteneffekt unterliegt, den man als Vakuumdoppelbrechung bezeichnet.

Ein Team unter der Leitung von Roberto Mignani vom INAF in Mailand in Italien und der Universität Zielona Gora in Polen haben mit dem Very Large Telescope (VLT) am Paranal-Observatorium in Chile den Neutronenstern RXJ1856.5-3754 beobachtet, der etwa 400 Lichtjahre von der Erde entfernt ist [1].

Zwar zählt RXJ1856.5-3754 zu den Neutronensternen, die uns am nächsten sind, jedoch kann er aufgrund seiner geringen Leuchtkraft nur schwer im sichtbaren Licht beobachtet werden. Deshalb mussten Astronomen mit dem FORS2-Instrument am VLT bis an die Grenzen dessen gehen, was mit derzeitigen Technologien möglich ist.

Neutronensterne sind die sehr dichten Überreste der Kerne massereicher Sterne, die am Ende ihres Lebens als Supernovae explodiert sind — massereich bedeutet hierbei, dass der Stern vorher 10 mal massereicher als unsere Sonne war. Die verbliebenen Neutronensterne weisen sehr starke Magnetfelder auf, die milliardenfach stärker sind als das unserer Sonne und die äußere Oberfläche und Umgebung des Sterns durchdringen.

Diese Felder sind so stark, dass sie sogar die Eigenschaften des leeren Raums um den Stern beeinflussen. Normalerweise wird ein Vakuum als völlig leer angesehen, so dass sich das Licht, das es durchdringt, nicht verändern kann. In der Quantenelektrodynamik (QED), der Quantentheorie, die die Wechselwirkung zwischen Photonen des Lichts und geladenen Teilchen wie Elektronen beschreibt, ist der Raum jedoch voller virtueller Teilchen, die ständig entstehen und wieder verschwinden. Sehr starke magnetische Felder können daher den Raum so verändern, dass er die Polarisation des durch ihn hindurchtretendes Lichts beeinflusst.

Mignani erläutert: „Gemäß der QED verhält sich ein hochmagnetisiertes Vakuum für die Ausbreitung des Lichts wie ein Prisma, ein Effekt, der als Vakuumdoppelbrechung bekannt ist.

Unter den vielen Vorhersagen der QED fehlte der Vakuumdoppelbrechung bisher jedoch ein direkter experimenteller Nachweis. Seit seiner Vorhersage in einem Fachartikel von Werner Heisenberg (der durch die nach ihm benannte Unschärferelation berühmt wurde) und Hans Heinrich Euler vor 80 Jahren sind bisher alle Versuche gescheitert, den Effekt im Labor nachzuweisen.

Dieser Effekt kann nur in Gegenwart enorm starker Magnetfelder nachgewiesen werden, wie sie etwa um Neutronensterne zu finden sind. Das zeigt einmal mehr, dass Neutronensterne für die Erforschung der grundlegenden Naturgesetze von unschätzbarem Wert sind“, erläuttert  Roberto Turolla von der Universität Padua in Italien.

Nach gründlicher Auswertung der VLT-Daten konnten Mignani und sein Team lineare Polarisation nachweisen – in einem signifikanten Ausmaß von rund 16% – von der sie davon ausgehen, dass sie aufgrund des Verstärkungseffektes der Vakuumdoppelbrechung im Bereich des leeren Raums um RXJ1856.5-3754 auftritt [2].

Vincenzo Testa vom INAF im italienischen Rom äußert sich dazu wiefolgt: „Hierbei handelt es sich um das lichtschwächste Objekt, bei dem Polarisation je gemessen wurde. Es erforderte eines der größten und leistungsstärksten Teleskope der Welt, das VLT, sowie präzise Datenauswertungstechniken, um das Signal eines solch lichtschwachen Sterns messen zu können.

Unsere Modelle können die hohe lineare Polarisation, die wir mit dem VLT gemessen haben, nur schwer erklären, wenn die durch die QED prognostizierten vakuumdoppelbrechenden Effekte nicht berücksichtigt werden“, ergänzt Mignani.

Diese VLT-Beobachtungen unterstützen erstmals die Vorhersagen dieser Art von QED-Effekten, die sich in extrem starken Magnetfeldern ergeben“, fügt Silvia Zane vom UCL/MSSL in Großbritannien hinzu.

Mignani ist begeistert angesichts der weiteren Fortschritte, die mit moderneren Teleskopen auf diesem Gebiet erreicht werden könnten: „Polarisationsmessungen mit der nächsten Generation an Teleskopen, wie dem European Extremly Large Telescope der ESO, könnten eine entscheidende Rolle dabei spielen, die Effekte der Vakuumdoppelbrechung, die von der QED vorhergesagt werden, an vielen weiteren Neutronensternen zu untersuchen.

Diese Messung, die nun zum ersten Mal mit sichtbaren Licht gemacht wurde, ebnet auch den Weg zu ähnlichen Messungen, die im Wellenlängenbereich der Röntgenstrahlung durchgeführt werden sollen“, schließt Kinwah Wu vom UCL/MSSL in Großbritannien.

Endnoten

[1] Dieses Objekt ist Teil einer Gruppe Neutronensterne, die als Glorreiche Sieben (engl. Magnificent Seven) bezeichnet werden. Es handelt sich um isolierte Neutronensterne (INS), die keine stellaren Begleiter haben, keine Radiowellen emittieren (wie Pulsare) und nicht von Materie umgeben werden, die noch von ihrer Supernova-Explosion stammt.

[2] Es gibt andere Prozesse, die Sternenlicht polarisieren können, wenn es den Raum durchquert. Das Team prüfte auch andere Möglichkeiten eingehend – zum Beispiel Polarisation, die durch Streuung an Staubkörnern entsteht – hält es allerdings für unwahrscheinlich, dass sie für das Polarisationssignal verantwortlich sind, das beobachtet wurde.

Quelle: ESO