Blogarchiv
Astronomie - Schnee in einem jungen Planetensystem

.

Eisige Grenze für die Entstehung von Planeten und Kometen

.

Die sogenannte Schneegrenze bestimmt, bei welchen Abständen sich erdähnliche Planeten oder Gasriesen um einen jungen Stern bilden können. Jetzt ist es erstmals gelungen, diese Grenzregion um den sonnenähnlichen Stern TW Hydrae abzubilden. Dessen Schneegrenze kann uns nicht nur mehr über die Entstehung von Planeten und Kometen verraten, sowie über die Faktoren, die ihre chemische Zusammensetzung bestimmen, sondern sich auch die Vergangenheit unseres Sonnensystems beleuchten. Die Ergebnisse erscheinen heute online auf Science Express.
Astronomen haben mit dem Atacama Large Millimeter/submillimeter Array (ALMA) die erste Aufnahme der Schneegrenze in einem jungen Planetensystem gewonnen. Auf der Erde bildet sich die Schneegrenze in großen Höhen, wo niedrige Temperaturen Luftfeuchtigkeit in Schnee verwandeln. An Bergen ist dies dort, wo der schneebedeckte Gipfel in nacktes Gestein übergeht, deutlich erkennbar.
Die Schneegrenzen um junge Sterne bilden sich auf ähnliche Art und Weise in den kalten Außenbereichen der Gas- und Staubscheiben, in denen Planetensysteme entstehen. Mit zunehmendem Abstand vom Stern friert zunächst Wasser (H2O) aus und bildet die erste Schneegrenze. Weiter draußen, bei noch kühleren Temperaturen, frieren weitere Stoffe aus und werden zu Schnee, wie zum Beispiel Kohlenstoffdioxid (CO2), Methan (CH4) und Kohlenstoffmonoxid (CO). In festem Zustand umgeben diese Stoffe Staubkörner mit einer Art klebriger Hülle. Sie spielen daher eine entscheidende Rolle beim Wachstum der Staubkörner: Sie verhindern, dass die Staubkörner bei Kollisionen auseinanderbrechen und ermöglichen ihnen so, zu den Grundbausteinen von Planeten und Kometen zu werden. Der Schnee vergrößert zusätzlich den Anteil fester Materie in der Scheibe und könnte dadurch den Prozess der Planetenentstehung beschleunigen.
Jede einzelne dieser Schneegrenzen – für Wasser, Kohlenstoffdioxid, Methan und Kohlenmonoxid – könnte mit der Entstehung bestimmter Typen von Planeten zusammenhängen [1]. Um einen sonnenähnlichen Stern, in einem Planetensystem wie dem unsrigen, würde die Wasser-Schneegrenze dem Bereich zwischen den Umlaufbahnen von Mars und Jupiter entsprechen, während die Kohlenstoffmonoxid-Schneegrenze etwa bei der Umlaufbahn des Planeten Neptun läge.
ALMA hat jetzt einen ersten Blick auf die Kohlenstoffmonoxid-Schneegrenze um den jungen Stern TW Hydrae geworfen, der 175 Lichtjahre von der Erde entfernt ist. Die Astronomen gehen davon aus, dass dieses angehende Planetensystem ähnliche Eigenschaften aufweist wie unser eigenes Sonnensystem in einem Alter von nur wenigen Millionen Jahre.
„Dank ALMA haben wir jetzt das erste echte Bild der Schneegrenze um einen jungen Stern. Das verrät uns einiges über die erste Phase der Geschichte unseres eigenen Sonnensystems”, sagt Chunhua “Charlie” Qi vom Harvard-Smithsonian Center for Astrophysics in Cambridge (USA), einer der beiden Hauptautoren des Fachartikels, in dem die Beobachtungen vorgestellt werden. „Damit sind wir in der Lage Details über die eisigen Außenbereiche eines fernen, sonnensystem-ähnlichen Planetensystems zu erfahren, die uns zuvor verborgen geblieben sind.”
Tatsächlich könnte das Vorhandensein der Kohlenstoffmonoxid-Schneegrenze noch weitere Konsequenzen als nur die Entstehung von Planeten haben. Kohlenstoffmonoxid-Eis wird für die Entstehung von Methanol benötigt, einem der Grundbausteine komplexerer organischer Moleküle. Kometen könnten derartige Moleküle zu den im Entstehen begriffenen erdähnlichen Planeten weiter innen befördert haben. Auf diese Weise wären Zutaten, die für die Entstehung des Lebens notwendig sind, auf diese Planeten gelangt.Bis zu den neuen Beobachtungen war es nicht gelungen, die Schneegrenzen direkt abzubilden, da sie immer in einem relativ dünnen Bereich im Inneren der protoplanetaren Scheibe um den Stern entstehen. Ihre exakte Position und Ausdehnung ließ sich daher nicht bestimmen. Ober- und unterhalb der dünnen Schicht, in der die Schneegrenzen existieren, verhindert die vom Stern ausgehende Strahlung die Bildung von Eis. Durch die starke Konzentration von Gas und Staub in der zentralen Ebene wird dieser Bereich von der Strahlung abgeschirmt, so dass Kohlenstoffmonoxid und andere Gase abkühlen und ausfrieren können.
Das Astronomenteam konnte mit einem ausgeklügelten Trick aber dennoch in das Innere der Scheibe schauen: Anstatt nach dem Schnee selbst Ausschau zu halten, der nicht direkt beobachtet werden kann, suchten sie nach einem Molekül namens Diazenyl (N2H+), das im Millimeterbereich des elektromagnetischen Spektrums strahlt und daher mit ALMA hervorragend beobachtet werden kann. Dieses Molekül reagiert sehr leicht mit Kohlenstoffmonoxidgas und wird dabei zerstört. In nachweisbaren Mengen ist es also nur dort zu finden wo das Kohlenstoffmonoxid zu Schnee ausgefroren ist und das Diazenyl daher nicht länger zerstören kann. Auf diese Weise wird die Anwesenheit von Diazenyl der Schlüssel zum Nachweis von Kohlenstoffmonoxid-Schnee.
Die einzigartige Empfindlichkeit und das Auflösungsvermögen von ALMA ermöglichen es den Astronomen, das Vorhandensein und die Verteilung von Diazenyl zu untersuchen. Dabei sind sie auf eine scharfe Grenze bei einem Abstand von etwa 30 Astronomischen Einheiten (also dem 30-fachen Abstand Erde-Sonne) vom Stern gestoßen. Die Messungen entsprechen einer Art Negativbild der Verteilung von Kohlenstoffmonoxid-Schnee in der Scheibe um TW Hydrae. Die Kohlenstoffmonoxid-Schneegrenze befindet sich demnach genau dort, wo sie auch der Theorie nach liegen sollte – am Innenrand des Diazenyl-Rings.
„Für unsere Beobachtungen standen uns nur 26 der 66 Antennen von ALMA zur Verfügung. Anzeichen für den Nachweis der Schneegrenzen bei anderen Sternen haben sich inzwischen noch in weiteren ALMA-Daten gezeigt, und wir gehen daher davon aus, dass zukünftige Beobachtungen mit der gesamten Anlage noch viele weitere solcher Schneegrenzen werden nachweisen können. Uns erwarten viele spannende Einblicke in die Entstehung und Entwicklung von Planeten – wir müssen nur abwarten”, schließt Michiel Hogerheijde von der Sterrewacht Leiden in den Niederlanden.
Endnoten
[1] Trockene Gesteinsplaneten bilden sich beispielsweise innerhalb der Wasser-Schneegrenze (also besonders nahe am Stern), wo nur Staub existieren kann. Auf der anderen Seite entstehen die eisigen Gasriesen nur hinter der Kohlenstoffmonoxid-Schneelinie.
.
Diese ALMA-Aufnahme zeigt den Bereich, in dem sich um den jungen Stern TW Hydrae CO-Schnee gebildet hat. Der Kohlenstoffmonoxid-Schnee ist grün dargestellt und wird ab einer Entfernung von 30 Astronomischen Einheiten um den Stern sichtbar. CO ist nicht nur für die Entstehung von Planeten und Kometen notwendig, sondern wird auch zur Erzeugung von Methanl benötigt, einem der wichtigsten Grundbausteine für die Entstehung des Lebens.
.
Diese Aufnahme vom ALMA-Observatorium in Chile zeigt in grün den Bereich, in dem sich um den jungen Stern TW Hydrae (in der Mitte eingezeichnet) CO-Schnee gebildet hat. Vergleicht man das TW Hydrae-System mit unserem Sonnensystem, entspricht der blaue Kreis der Umlaufbahn des Planeten Neptun. Der Übergang zum CO-Eis markiert dabei auch den Beginn der Zone in der sich kleinere eisbedeckte Körper wie Kometen oder Zwergplaneten wie Pluto und Eris bilden können.
.
Quelle: ESO
5128 Views
Raumfahrt+Astronomie-Blog von CENAP 0